Face Recognition by Principal Component Regression using Hypercomplex Numbers

Aliaa T. Kamal, M. El-Melegy, Hassan El-Hawary, Khaled Hussein
{"title":"Face Recognition by Principal Component Regression using Hypercomplex Numbers","authors":"Aliaa T. Kamal, M. El-Melegy, Hassan El-Hawary, Khaled Hussein","doi":"10.21608/aunj.2022.131391.1006","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a classification by principal component regression (CbPCR) strategy, which depends on performing regression of each data class in terms of its principal components. This CbPCR formulation leads to a novel formulation of the Linear Regression Classification (LRC) problem that keeps the key information of the data classes while providing more compact closed-form solutions. We also extend this strategy to the 4D hypercomplex domains to take into account the color information of the image. Our experiments on two color face recognition benchmark databases prove the efficacy of the proposed strategy.","PeriodicalId":8568,"journal":{"name":"Assiut University Journal of Multidisciplinary Scientific Research","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assiut University Journal of Multidisciplinary Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/aunj.2022.131391.1006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a classification by principal component regression (CbPCR) strategy, which depends on performing regression of each data class in terms of its principal components. This CbPCR formulation leads to a novel formulation of the Linear Regression Classification (LRC) problem that keeps the key information of the data classes while providing more compact closed-form solutions. We also extend this strategy to the 4D hypercomplex domains to take into account the color information of the image. Our experiments on two color face recognition benchmark databases prove the efficacy of the proposed strategy.
基于超复数的主成分回归人脸识别
在本文中,我们提出了一种基于主成分回归(CbPCR)的分类策略,该策略依赖于对每个数据类的主成分进行回归。这种CbPCR公式导致线性回归分类(LRC)问题的新公式,该问题保留了数据类的关键信息,同时提供了更紧凑的封闭形式解决方案。我们还将此策略扩展到4D超复杂域,以考虑图像的颜色信息。我们在两个彩色人脸识别基准数据库上的实验证明了该策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信