An Efficient Algorithmic 3-SAT Formulation for Sudoku Puzzle using Graph Coloring

Deepika Rai, N. Chaudhari, M. Ingle
{"title":"An Efficient Algorithmic 3-SAT Formulation for Sudoku Puzzle using Graph Coloring","authors":"Deepika Rai, N. Chaudhari, M. Ingle","doi":"10.1109/ICACAT.2018.8933664","DOIUrl":null,"url":null,"abstract":"Graph k-Coloring Problem (GKCP) is a renowned NP Complete Problem (NPC) that has been received noteworthy contribution in diverse research areas. One of the important applications of GKCP is the Sudoku puzzle which is also an NPC. We encoded the problem of solving Sudoku puzzle of size (n$\\times$n) into GKCP firstly. Further, we reduced GKCP into 3-SAT clauses to obtain the solution of Sudoku puzzle (n$\\times$ n). Encoding of Sudoku puzzle to 3-SAT clauses straightforwardly leads to large number of clauses. In this way, we developed an algorithm ${SP}_{2}\\mathrm{G}_{2}3$ SAT on the basis of 3-SAT formulation of Sudoku puzzle using GKCP. This algorithm generates $[(n^{2}/2)^{\\star}(3n^{2}+(1-2\\sqrt{n})^{\\star}n-4)+m]3$-SAT clauses that can be solved by SAT solver to obtain the solution of Sudoku puzzle $(n\\times n)$. 3-SAT reduction of Sudoku puzzle using GKCP provides an efficient way to acquire the solution of Sudoku puzzle of size $(n\\times n)$ as it generates fewer clauses than earlier approach.","PeriodicalId":6575,"journal":{"name":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","volume":"40 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACAT.2018.8933664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Graph k-Coloring Problem (GKCP) is a renowned NP Complete Problem (NPC) that has been received noteworthy contribution in diverse research areas. One of the important applications of GKCP is the Sudoku puzzle which is also an NPC. We encoded the problem of solving Sudoku puzzle of size (n$\times$n) into GKCP firstly. Further, we reduced GKCP into 3-SAT clauses to obtain the solution of Sudoku puzzle (n$\times$ n). Encoding of Sudoku puzzle to 3-SAT clauses straightforwardly leads to large number of clauses. In this way, we developed an algorithm ${SP}_{2}\mathrm{G}_{2}3$ SAT on the basis of 3-SAT formulation of Sudoku puzzle using GKCP. This algorithm generates $[(n^{2}/2)^{\star}(3n^{2}+(1-2\sqrt{n})^{\star}n-4)+m]3$-SAT clauses that can be solved by SAT solver to obtain the solution of Sudoku puzzle $(n\times n)$. 3-SAT reduction of Sudoku puzzle using GKCP provides an efficient way to acquire the solution of Sudoku puzzle of size $(n\times n)$ as it generates fewer clauses than earlier approach.
一种利用图着色的数独有效的3-SAT算法公式
图k-着色问题(Graph k-Coloring Problem, GKCP)是一个著名的NP完全问题(NP Complete Problem, NPC),在各个研究领域都有显著的贡献。GKCP的一个重要应用是数独谜题,它也是一个NPC。我们首先将求解大小为(n$\ × $n)的数独问题编码到GKCP中。进一步,我们将GKCP简化为3-SAT子句,得到数独题的解(n$\乘以$ n)。将数独题直接编码为3-SAT子句会导致大量子句。在此基础上,我们利用GKCP开发了一种算法${SP}_{2}\ maththrm {G}_{2}3$ SAT。该算法生成$[(n^{2}/2)^{\star}(3n^{2}+(1-2\sqrt{n})^{\star}n-4)+m]3$-SAT子句,通过SAT求解器求解得到数独题$(n\乘以n)$的解。使用GKCP进行数独的3-SAT约简提供了一种获得大小为$(n\ * n)$的数独解的有效方法,因为它产生的子句比以前的方法少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信