{"title":"Reason-able embeddings: Learning concept embeddings with a transferable neural reasoner","authors":"Dariusz Max Adamski, Jedrzej Potoniec","doi":"10.3233/sw-233355","DOIUrl":null,"url":null,"abstract":"We present a novel approach for learning embeddings of ALC knowledge base concepts. The embeddings reflect the semantics of the concepts in such a way that it is possible to compute an embedding of a complex concept from the embeddings of its parts by using appropriate neural constructors. Embeddings for different knowledge bases are vectors in a shared vector space, shaped in such a way that approximate subsumption checking for arbitrarily complex concepts can be done by the same neural network, called a reasoner head, for all the knowledge bases. To underline this unique property of enabling reasoning directly on embeddings, we call them reason-able embeddings. We report the results of experimental evaluation showing that the difference in reasoning performance between training a separate reasoner head for each ontology and using a shared reasoner head, is negligible.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"23 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233355","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
We present a novel approach for learning embeddings of ALC knowledge base concepts. The embeddings reflect the semantics of the concepts in such a way that it is possible to compute an embedding of a complex concept from the embeddings of its parts by using appropriate neural constructors. Embeddings for different knowledge bases are vectors in a shared vector space, shaped in such a way that approximate subsumption checking for arbitrarily complex concepts can be done by the same neural network, called a reasoner head, for all the knowledge bases. To underline this unique property of enabling reasoning directly on embeddings, we call them reason-able embeddings. We report the results of experimental evaluation showing that the difference in reasoning performance between training a separate reasoner head for each ontology and using a shared reasoner head, is negligible.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.