{"title":"Instability and nonordering of localized steady states to a classs of reaction-diffusion equations in ℝ N","authors":"C. Sourdis","doi":"10.5802/CRMATH.150","DOIUrl":null,"url":null,"abstract":"We show that the elliptic problem ∆u + f (u) = 0 in RN , N ≥ 1, with f ∈C 1(R) and f (0) = 0 does not have nontrivial stable solutions that decay to zero at infinity, provided that f is nonincreasing near the origin. As a corollary, we can show that any two nontrivial solutions that decay to zero at infinity must intersect each other, provided that at least one of them is sign-changing. This property was previously known only in the case where both solutions are positive with a different approach. We also discuss implications of our main result on the existence of monotone heteroclinic solutions to the corresponding reaction-diffusion equation. Manuscript received 26th August 2020, revised 13th November 2020, accepted 15th November 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We show that the elliptic problem ∆u + f (u) = 0 in RN , N ≥ 1, with f ∈C 1(R) and f (0) = 0 does not have nontrivial stable solutions that decay to zero at infinity, provided that f is nonincreasing near the origin. As a corollary, we can show that any two nontrivial solutions that decay to zero at infinity must intersect each other, provided that at least one of them is sign-changing. This property was previously known only in the case where both solutions are positive with a different approach. We also discuss implications of our main result on the existence of monotone heteroclinic solutions to the corresponding reaction-diffusion equation. Manuscript received 26th August 2020, revised 13th November 2020, accepted 15th November 2020.