A HYBRID PSO-SA SCHEME FOR IMPROVING ACCURACY OF FUZZY TIME SERIES FORECASTING MODELS

Phạm Đình Phong, Nguyen Duc Du, Phạm Hoàng Hiệp, Trần Xuân Thành
{"title":"A HYBRID PSO-SA SCHEME FOR IMPROVING ACCURACY OF FUZZY TIME SERIES FORECASTING MODELS","authors":"Phạm Đình Phong, Nguyen Duc Du, Phạm Hoàng Hiệp, Trần Xuân Thành","doi":"10.15625/1813-9663/38/3/17424","DOIUrl":null,"url":null,"abstract":"Forecasting methods based on fuzzy time series have been examined intensively during last years. Three main factors which affect the accuracy of those forecasting methods are length of intervals, the way of establishing fuzzy logical relationship groups, and defuzzification techniques. Many researches focus on optimizing length of intervals in order to improve forecasting accuracies by utilizing various optimization techniques. In the line of that research trend, in this paper, a hybrid particle swarm optimization combined with simulated annealing (PSO-SA) algorithm is proposed to optimize length of intervals to improve forecasting accuracies. The experimental results in comparison with the existing forecasting models show that the proposed forecasting model is an effective forecasting model.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/38/3/17424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Forecasting methods based on fuzzy time series have been examined intensively during last years. Three main factors which affect the accuracy of those forecasting methods are length of intervals, the way of establishing fuzzy logical relationship groups, and defuzzification techniques. Many researches focus on optimizing length of intervals in order to improve forecasting accuracies by utilizing various optimization techniques. In the line of that research trend, in this paper, a hybrid particle swarm optimization combined with simulated annealing (PSO-SA) algorithm is proposed to optimize length of intervals to improve forecasting accuracies. The experimental results in comparison with the existing forecasting models show that the proposed forecasting model is an effective forecasting model.
一种提高模糊时间序列预测模型精度的混合pso-sa方案
近年来,基于模糊时间序列的预测方法得到了广泛的研究。影响预测精度的三个主要因素是区间长度、模糊逻辑关系组的建立方式和去模糊化技术。为了提高预测精度,许多研究都在利用各种优化技术来优化区间长度。根据这一研究趋势,本文提出了一种混合粒子群优化与模拟退火(PSO-SA)算法相结合的区间长度优化方法,以提高预测精度。实验结果与已有的预测模型进行了比较,表明所提出的预测模型是一种有效的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信