Fault Detection for Nonlinear Systems

Tormod Fretheim, R. Shoureshi, T. Vincent
{"title":"Fault Detection for Nonlinear Systems","authors":"Tormod Fretheim, R. Shoureshi, T. Vincent","doi":"10.1115/imece2001/dsc-24599","DOIUrl":null,"url":null,"abstract":"\n A new fault detection and isolation scheme has been developed to enable automatic detection of faulty conditions in linear or non-linear systems. The focus of this paper is on the development of a general, and feasible method for nonlinear system fault detection which can be easily implemented on input/output models. The method proposed here is different in that the neural network is used to model the process dynamics, while a dead-beat observer is implemented by solving a set of coupled nonlinear equations. This enables the introduction of constraints into the problem that can improve the power of the fault detection techniques.","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/dsc-24599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new fault detection and isolation scheme has been developed to enable automatic detection of faulty conditions in linear or non-linear systems. The focus of this paper is on the development of a general, and feasible method for nonlinear system fault detection which can be easily implemented on input/output models. The method proposed here is different in that the neural network is used to model the process dynamics, while a dead-beat observer is implemented by solving a set of coupled nonlinear equations. This enables the introduction of constraints into the problem that can improve the power of the fault detection techniques.
非线性系统的故障检测
提出了一种新的故障检测和隔离方案,可以自动检测线性或非线性系统中的故障条件。本文的重点是开发一种通用的、可行的非线性系统故障检测方法,该方法可以很容易地在输入/输出模型上实现。该方法的不同之处在于采用神经网络对过程动力学进行建模,而通过求解一组耦合非线性方程来实现死拍观测器。这允许在问题中引入约束,从而提高故障检测技术的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信