{"title":"Decomposition of N2O on Perovskite-Related Oxides","authors":"C. Swamy, J. Christopher","doi":"10.1080/01614949208016320","DOIUrl":null,"url":null,"abstract":"Abstract Mixed metal oxides crystalizing in a perovskite-related structure have long been of interest to solid state chemists and physicists because of their technologically important physical properties. The ready availability of a family of isomorphic solids with controllable physical properties makes these oxides suitable for basic research in catalysis. These mixed metal oxides are more advantageous and are better catalytic materials than simple oxides because: (i) the crystal structure can accomodate various metal ions and can stabilize unusual and mixed valence states of active metal ion; (ii) appropriate formulation of these oxides leads to easy tailoring of many desirable properties such as valence state of transition metal ion, distance between active sites, binding energy, diffusion of oxygen in the lattice, magnetic and conducting properties of the solid; (iii) the catalytic activity can be correlated to solid state properties since many of their solid state properties are thoroughly understood...","PeriodicalId":50986,"journal":{"name":"Catalysis Reviews-Science and Engineering","volume":"3 1","pages":"409-425"},"PeriodicalIF":9.3000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews-Science and Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/01614949208016320","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 66
Abstract
Abstract Mixed metal oxides crystalizing in a perovskite-related structure have long been of interest to solid state chemists and physicists because of their technologically important physical properties. The ready availability of a family of isomorphic solids with controllable physical properties makes these oxides suitable for basic research in catalysis. These mixed metal oxides are more advantageous and are better catalytic materials than simple oxides because: (i) the crystal structure can accomodate various metal ions and can stabilize unusual and mixed valence states of active metal ion; (ii) appropriate formulation of these oxides leads to easy tailoring of many desirable properties such as valence state of transition metal ion, distance between active sites, binding energy, diffusion of oxygen in the lattice, magnetic and conducting properties of the solid; (iii) the catalytic activity can be correlated to solid state properties since many of their solid state properties are thoroughly understood...
期刊介绍:
Catalysis Reviews is dedicated to fostering interdisciplinary perspectives in catalytic science and engineering, catering to a global audience of industrial and academic researchers. This journal serves as a bridge between the realms of heterogeneous, homogeneous, and bio-catalysis, providing a crucial and critical evaluation of the current state of catalytic science and engineering. Published topics encompass advances in technology and theory, engineering and chemical aspects of catalytic reactions, reactor design, computer models, analytical tools, and statistical evaluations.