A variety of algebras closely related to subordination algebras

Q1 Arts and Humanities
S. Celani, R. Jansana
{"title":"A variety of algebras closely related to subordination algebras","authors":"S. Celani, R. Jansana","doi":"10.1080/11663081.2022.2109122","DOIUrl":null,"url":null,"abstract":"We introduce a variety of algebras in the language of Boolean algebras with an extra implication, namely the variety of pseudo-subordination algebras, which is closely related to subordination algebras. We believe it provides a minimal general algebraic framework where to place and systematise the research on classes of algebras related to several kinds of subordination algebras. We also consider the subvariety of pseudo-contact algebras, related to contact algebras, and the subvariety of the strict implication algebras introduced in Bezhanishvili et al. [(2019). A strict implication calculus for compact Hausdorff spaces. Annals of Pure and Applied Logic, 170, 102714]. The variety of pseudo-subordination algebras is term equivalent to the variety of Boolean algebras with a binary modal operator. We exploit this fact in our study. In particular, to obtain a topological duality from which we derive the known topological dualities for subordination algebras and contact algebras.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"372 1","pages":"200 - 238"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2022.2109122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a variety of algebras in the language of Boolean algebras with an extra implication, namely the variety of pseudo-subordination algebras, which is closely related to subordination algebras. We believe it provides a minimal general algebraic framework where to place and systematise the research on classes of algebras related to several kinds of subordination algebras. We also consider the subvariety of pseudo-contact algebras, related to contact algebras, and the subvariety of the strict implication algebras introduced in Bezhanishvili et al. [(2019). A strict implication calculus for compact Hausdorff spaces. Annals of Pure and Applied Logic, 170, 102714]. The variety of pseudo-subordination algebras is term equivalent to the variety of Boolean algebras with a binary modal operator. We exploit this fact in our study. In particular, to obtain a topological duality from which we derive the known topological dualities for subordination algebras and contact algebras.
与从属代数密切相关的各种代数
我们在布尔代数的语言中引入了各种代数,并附带了一个额外的含义,即伪隶属代数的变化,它与隶属代数密切相关。我们认为它提供了一个最小的一般代数框架,在那里放置和系统的研究类代数相关的几种从属代数。我们还考虑了与接触代数相关的伪接触代数的子变量,以及Bezhanishvili等人[(2019)]中引入的严格蕴涵代数的子变量。紧Hausdorff空间的严格蕴涵演算。数学与应用学报,2004,17(2):357 - 357。伪隶属代数的变数与具有二元模态算子的布尔代数的变数是项等价的。我们在研究中利用了这一事实。特别地,我们得到了一个拓扑对偶,并由此导出了隶属代数和接触代数的已知拓扑对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Non-Classical Logics
Journal of Applied Non-Classical Logics Arts and Humanities-Philosophy
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信