Limiting masses and radii of neutron stars and their implications

C. Drischler, Sophia Han, J. Lattimer, M. Prakash, S. Reddy, Tianqi Zhao
{"title":"Limiting masses and radii of neutron stars and their implications","authors":"C. Drischler, Sophia Han, J. Lattimer, M. Prakash, S. Reddy, Tianqi Zhao","doi":"10.1103/PHYSREVC.103.045808","DOIUrl":null,"url":null,"abstract":"We combine equation of state of dense matter up to twice nuclear saturation density ($n_{\\rm sat}=0.16\\, \\text{fm}^{-3}$) obtained using chiral effective field theory ($\\chi$EFT), and recent observations of neutron stars to gain insights about the high-density matter encountered in their cores. A key element in our study is the recent Bayesian analysis of correlated EFT truncation errors based on order-by-order calculations up to next-to-next-to-next-to-leading order in the $\\chi$EFT expansion. We refine the bounds on the maximum mass imposed by causality at high densities, and provide stringent limits on the maximum and minimum radii of $\\sim1.4\\,{\\rm M}_{\\odot}$ and $\\sim2.0\\,{\\rm M}_{\\odot}$ stars. Including $\\chi$EFT predictions from $n_{\\rm sat}$ to $2\\,n_{\\rm sat}$ reduces the permitted ranges of the radius of a $1.4\\,{\\rm M}_{\\odot}$ star, $R_{1.4}$, by $\\sim3.5\\, \\text{km}$. If observations indicate $R_{1.4} 1/2$ for densities above $2\\,n_{\\rm sat}$, or that $\\chi$EFT breaks down below $2\\,n_{\\rm sat}$. We also comment on the nature of the secondary compact object in GW190814 with mass $\\simeq 2.6\\,{\\rm M}_{\\odot}$, and discuss the implications of massive neutron stars $>2.1 \\,{\\rm M}_{\\odot}\\,(2.6\\,{\\rm M}_{\\odot})$ in future radio and gravitational-wave searches. Some form of strongly interacting matter with $c^2_{s}>0.35\\, (0.55)$ must be realized in the cores of such massive neutron stars. In the absence of phase transitions below $2\\,n_{\\rm sat}$, the small tidal deformability inferred from GW170817 lends support for the relatively small pressure predicted by $\\chi$EFT for the baryon density $n_{\\rm B}$ in the range $1-2\\,n_{\\rm sat}$. Together they imply that the rapid stiffening required to support a high maximum mass should occur only when $n_{\\rm B} \\gtrsim 1.5-1.8\\,n_{\\rm sat}$.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVC.103.045808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We combine equation of state of dense matter up to twice nuclear saturation density ($n_{\rm sat}=0.16\, \text{fm}^{-3}$) obtained using chiral effective field theory ($\chi$EFT), and recent observations of neutron stars to gain insights about the high-density matter encountered in their cores. A key element in our study is the recent Bayesian analysis of correlated EFT truncation errors based on order-by-order calculations up to next-to-next-to-next-to-leading order in the $\chi$EFT expansion. We refine the bounds on the maximum mass imposed by causality at high densities, and provide stringent limits on the maximum and minimum radii of $\sim1.4\,{\rm M}_{\odot}$ and $\sim2.0\,{\rm M}_{\odot}$ stars. Including $\chi$EFT predictions from $n_{\rm sat}$ to $2\,n_{\rm sat}$ reduces the permitted ranges of the radius of a $1.4\,{\rm M}_{\odot}$ star, $R_{1.4}$, by $\sim3.5\, \text{km}$. If observations indicate $R_{1.4} 1/2$ for densities above $2\,n_{\rm sat}$, or that $\chi$EFT breaks down below $2\,n_{\rm sat}$. We also comment on the nature of the secondary compact object in GW190814 with mass $\simeq 2.6\,{\rm M}_{\odot}$, and discuss the implications of massive neutron stars $>2.1 \,{\rm M}_{\odot}\,(2.6\,{\rm M}_{\odot})$ in future radio and gravitational-wave searches. Some form of strongly interacting matter with $c^2_{s}>0.35\, (0.55)$ must be realized in the cores of such massive neutron stars. In the absence of phase transitions below $2\,n_{\rm sat}$, the small tidal deformability inferred from GW170817 lends support for the relatively small pressure predicted by $\chi$EFT for the baryon density $n_{\rm B}$ in the range $1-2\,n_{\rm sat}$. Together they imply that the rapid stiffening required to support a high maximum mass should occur only when $n_{\rm B} \gtrsim 1.5-1.8\,n_{\rm sat}$.
中子星的极限质量和半径及其意义
我们将利用手性有效场理论($\chi$ EFT)得到的两倍核饱和密度的致密物质状态方程($n_{\rm sat}=0.16\, \text{fm}^{-3}$)与最近对中子星的观测相结合,以深入了解中子星核心中遇到的高密度物质。我们研究中的一个关键因素是最近的贝叶斯分析,该分析基于$\chi$ EFT展开中逐级计算直至次-次-次-次-次-序的相关EFT截断误差。我们改进了高密度下因果关系所施加的最大质量界限,并对$\sim1.4\,{\rm M}_{\odot}$和$\sim2.0\,{\rm M}_{\odot}$恒星的最大和最小半径提供了严格的限制。包括$n_{\rm sat}$到$2\,n_{\rm sat}$的$\chi$ EFT预测,将$1.4\,{\rm M}_{\odot}$恒星的允许半径范围$R_{1.4}$降低了$\sim3.5\, \text{km}$。如果观测表明$2\,n_{\rm sat}$以上的密度为$R_{1.4} 1/2$,或者$\chi$ EFT低于$2\,n_{\rm sat}$。我们还评论了GW190814中质量为$\simeq 2.6\,{\rm M}_{\odot}$的次级致密天体的性质,并讨论了大质量中子星$>2.1 \,{\rm M}_{\odot}\,(2.6\,{\rm M}_{\odot})$在未来射电和引力波搜索中的意义。在如此巨大的中子星的核心中,一定存在某种形式的与$c^2_{s}>0.35\, (0.55)$强烈相互作用的物质。在$2\,n_{\rm sat}$以下不存在相变的情况下,GW170817推断出的小潮汐变形能力支持了$\chi$ EFT预测的重子密度$n_{\rm B}$在$1-2\,n_{\rm sat}$范围内相对较小的压力。它们共同表明,支撑高最大质量所需的快速加强只应发生在$n_{\rm B} \gtrsim 1.5-1.8\,n_{\rm sat}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信