{"title":"Role of Plate Length on Noise from Wall Jets","authors":"Rahul S. Arackal, T. Jothi","doi":"10.3813/aaa.919374","DOIUrl":null,"url":null,"abstract":"The present study experimentally investigates the effect of the growth of inner layer on noise emission characteristics of wall jets. The plate length L considered for the current study vary in the range of L/h = 2.5 to 30, where h is the nozzle height. The jet\n is issued from a nozzle having the exit dimensions of 20 cm in width and 2 cm in height h. The jet Reynolds number, based on the nozzle height and jet exit velocity Uj, is varied up to 7.0 · 104. Acoustic measurements revealed the distinct variations in\n the noise levels with different plate lengths. The L/h = 2.5 wall jet has an increase in noise levels by around 10 dB compared to that of a free jet (background noise). Wall jets in the range of L/h = 5 to 20 radiate higher noise levels compared to other plates, while the least\n noise emissions are observed from fully developed wall jets (L/h > 20). The significant sources identified for noise emissions are the trailing edge and the secondary shear layer in the wall jets. The low frequency noise corresponding to the Strouhal number (based on h) below\n 0.2 is characterized as the trailing edge noise. The spectra of the wall jets collapse in the Strouhal number range (based on the inner layer thickness of wall jets) of ∼0.2 to 1.0 indicating the secondary shear layer noise of wall jets.","PeriodicalId":35085,"journal":{"name":"Acta Acustica united with Acustica","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica united with Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3813/aaa.919374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 3
Abstract
The present study experimentally investigates the effect of the growth of inner layer on noise emission characteristics of wall jets. The plate length L considered for the current study vary in the range of L/h = 2.5 to 30, where h is the nozzle height. The jet
is issued from a nozzle having the exit dimensions of 20 cm in width and 2 cm in height h. The jet Reynolds number, based on the nozzle height and jet exit velocity Uj, is varied up to 7.0 · 104. Acoustic measurements revealed the distinct variations in
the noise levels with different plate lengths. The L/h = 2.5 wall jet has an increase in noise levels by around 10 dB compared to that of a free jet (background noise). Wall jets in the range of L/h = 5 to 20 radiate higher noise levels compared to other plates, while the least
noise emissions are observed from fully developed wall jets (L/h > 20). The significant sources identified for noise emissions are the trailing edge and the secondary shear layer in the wall jets. The low frequency noise corresponding to the Strouhal number (based on h) below
0.2 is characterized as the trailing edge noise. The spectra of the wall jets collapse in the Strouhal number range (based on the inner layer thickness of wall jets) of ∼0.2 to 1.0 indicating the secondary shear layer noise of wall jets.
期刊介绍:
Cessation. Acta Acustica united with Acustica (Acta Acust united Ac), was published together with the European Acoustics Association (EAA). It was an international, peer-reviewed journal on acoustics. It published original articles on all subjects in the field of acoustics, such as
• General Linear Acoustics, • Nonlinear Acoustics, Macrosonics, • Aeroacoustics, • Atmospheric Sound, • Underwater Sound, • Ultrasonics, • Physical Acoustics, • Structural Acoustics, • Noise Control, • Active Control, • Environmental Noise, • Building Acoustics, • Room Acoustics, • Acoustic Materials and Metamaterials, • Audio Signal Processing and Transducers, • Computational and Numerical Acoustics, • Hearing, Audiology and Psychoacoustics, • Speech,
• Musical Acoustics, • Virtual Acoustics, • Auditory Quality of Systems, • Animal Bioacoustics, • History of Acoustics.