Milad Alshomary, Jonas Rieskamp, Henning Wachsmuth
{"title":"Generating Contrastive Snippets for Argument Search","authors":"Milad Alshomary, Jonas Rieskamp, Henning Wachsmuth","doi":"10.3233/FAIA220138","DOIUrl":null,"url":null,"abstract":". In argument search, snippets provide an overview of the aspects discussed by the arguments retrieved for a queried controversial topic. Existing work has focused on generating snippets that are representative of an argument’s content while remaining argumentative. In this work, we argue that the snippets should also be contrastive , that is, they should highlight the aspects that make an argument unique in the context of others. Thereby, aspect diversity is increased and redundancy is reduced. We present and compare two snippet generation approaches that jointly optimize representativeness and contrastiveness. According to our experiments, both approaches have advantages, and one is able to generate representative yet sufficiently contrastive snippets.","PeriodicalId":36616,"journal":{"name":"Comma","volume":"62 1","pages":"21-31"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FAIA220138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
Abstract
. In argument search, snippets provide an overview of the aspects discussed by the arguments retrieved for a queried controversial topic. Existing work has focused on generating snippets that are representative of an argument’s content while remaining argumentative. In this work, we argue that the snippets should also be contrastive , that is, they should highlight the aspects that make an argument unique in the context of others. Thereby, aspect diversity is increased and redundancy is reduced. We present and compare two snippet generation approaches that jointly optimize representativeness and contrastiveness. According to our experiments, both approaches have advantages, and one is able to generate representative yet sufficiently contrastive snippets.