DNA-based molecular architecture with spatially localized components

Richard A. Muscat, K. Strauss, L. Ceze, Georg Seelig
{"title":"DNA-based molecular architecture with spatially localized components","authors":"Richard A. Muscat, K. Strauss, L. Ceze, Georg Seelig","doi":"10.1145/2485922.2485938","DOIUrl":null,"url":null,"abstract":"Performing computation inside living cells offers life-changing applications, from improved medical diagnostics to better cancer therapy to intelligent drugs. Due to its bio-compatibility and ease of engineering, one promising approach for performing in-vivo computation is DNA strand displacement. This paper introduces computer architects to DNA strand displacement \"circuits\", discusses associated architectural challenges, and proposes a new organization that provides practical composability. In particular, prior approaches rely mostly on stochastic interaction of freely diffusing components. This paper proposes practical spatial isolation of components, leading to more easily designed DNA-based circuits. DNA nanotechnology is currently at a turning point, with many proposed applications being realized [20, 9]. We believe that it is time for the computer architecture community to take notice and contribute.","PeriodicalId":20555,"journal":{"name":"Proceedings of the 40th Annual International Symposium on Computer Architecture","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2485922.2485938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Performing computation inside living cells offers life-changing applications, from improved medical diagnostics to better cancer therapy to intelligent drugs. Due to its bio-compatibility and ease of engineering, one promising approach for performing in-vivo computation is DNA strand displacement. This paper introduces computer architects to DNA strand displacement "circuits", discusses associated architectural challenges, and proposes a new organization that provides practical composability. In particular, prior approaches rely mostly on stochastic interaction of freely diffusing components. This paper proposes practical spatial isolation of components, leading to more easily designed DNA-based circuits. DNA nanotechnology is currently at a turning point, with many proposed applications being realized [20, 9]. We believe that it is time for the computer architecture community to take notice and contribute.
具有空间定位成分的基于dna的分子结构
在活细胞内进行计算提供了改变生活的应用,从改进的医疗诊断到更好的癌症治疗,再到智能药物。由于其生物相容性和易于工程,一种有前途的进行体内计算的方法是DNA链位移。本文介绍了DNA链位移“电路”的计算机架构,讨论了相关的架构挑战,并提出了一种提供实际可组合性的新组织。特别是,先前的方法主要依赖于自由扩散组分的随机相互作用。本文提出了实用的元件空间隔离,从而更容易设计基于dna的电路。DNA纳米技术目前正处于一个转折点,许多提出的应用正在实现[20,9]。我们相信是时候让计算机体系结构社区注意并做出贡献了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信