OPTIMAL TRACKING CONTROL FOR ROBOT MANIPULATORS WITH INPUT CONSTRAINT BASED REINFORCEMENT LEARNING

N. D. Dien, Luy Tan Nguyen, L. Lãi, Tran Thanh Hai
{"title":"OPTIMAL TRACKING CONTROL FOR ROBOT MANIPULATORS WITH INPUT CONSTRAINT BASED REINFORCEMENT LEARNING","authors":"N. D. Dien, Luy Tan Nguyen, L. Lãi, Tran Thanh Hai","doi":"10.15625/1813-9663/18099","DOIUrl":null,"url":null,"abstract":"This paper introduces an optimal tracking controller for robot manipulators with saturation torques. The robot model is presented as a strict-feedback nonlinear system. Firstly, the position tracking control problem is transformed into the optimal tracking control problem. Subsequently, the saturated optimal control law is designed. The optimal control law is determined through the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We use a reinforcement learning algorithm with only one neural network (NN) to approximate the solution of the equation HJB. The technique of experience replay is used to relax a persistent citation condition. By Lyapunov analysis, the tracking and the approximation errors are uniformly ultimately bounded (UUB). Finally, the simulation on a robot manipulator with saturation torques is performed to verify the efficiency of the proposed controller.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/18099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an optimal tracking controller for robot manipulators with saturation torques. The robot model is presented as a strict-feedback nonlinear system. Firstly, the position tracking control problem is transformed into the optimal tracking control problem. Subsequently, the saturated optimal control law is designed. The optimal control law is determined through the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We use a reinforcement learning algorithm with only one neural network (NN) to approximate the solution of the equation HJB. The technique of experience replay is used to relax a persistent citation condition. By Lyapunov analysis, the tracking and the approximation errors are uniformly ultimately bounded (UUB). Finally, the simulation on a robot manipulator with saturation torques is performed to verify the efficiency of the proposed controller.
基于输入约束的强化学习机器人机械臂最优跟踪控制
介绍了一种针对饱和转矩机器人的最优跟踪控制器。机器人模型是一个严格反馈的非线性系统。首先,将位置跟踪控制问题转化为最优跟踪控制问题。随后,设计了饱和最优控制律。通过求解Hamilton-Jacobi-Bellman (HJB)方程确定了最优控制律。我们使用一种只有一个神经网络(NN)的强化学习算法来近似求解方程HJB。经验回放技术是用来放松一个持续引用条件。通过李雅普诺夫分析,跟踪误差和逼近误差是一致最终有界的。最后,以饱和转矩的机器人为例进行了仿真,验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信