Computation of Zagreb Polynomial and Indices for Silicate Network and Silicate Chain Network

IF 0.7 Q2 MATHEMATICS
Muhammad Usman Ghani, M. Inc., Faisal Sultan, M. Cancan, A. Houwe
{"title":"Computation of Zagreb Polynomial and Indices for Silicate Network and Silicate Chain Network","authors":"Muhammad Usman Ghani, M. Inc., Faisal Sultan, M. Cancan, A. Houwe","doi":"10.1155/2023/9722878","DOIUrl":null,"url":null,"abstract":"The connection of Zagreb polynomials and Zagreb indices to chemical graph theory is a bifurcation of mathematical chemistry, which has had a crucial influence on the development of chemical sciences. Nowadays, the study of topological indices has become a vast effective research area in chemical graph theory. In this article, we add up eight different Zagreb polynomials for the Silicate Network and Silicate Chain Network. From these Zagreb polynomials, we catch up on degree-based Zagreb indices. We also provide a graphical representation of the outcome that describes the dependence of topological indices on the given parameters of polynomial structure.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9722878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The connection of Zagreb polynomials and Zagreb indices to chemical graph theory is a bifurcation of mathematical chemistry, which has had a crucial influence on the development of chemical sciences. Nowadays, the study of topological indices has become a vast effective research area in chemical graph theory. In this article, we add up eight different Zagreb polynomials for the Silicate Network and Silicate Chain Network. From these Zagreb polynomials, we catch up on degree-based Zagreb indices. We also provide a graphical representation of the outcome that describes the dependence of topological indices on the given parameters of polynomial structure.
硅酸盐网络和硅酸盐链网络的Zagreb多项式和指标的计算
萨格勒布多项式和萨格勒布指数与化学图论的联系是数学化学的一个分支,对化学科学的发展产生了重要影响。目前,拓扑指数的研究已成为化学图论中一个广阔而有效的研究领域。在本文中,我们为硅酸盐网络和硅酸盐链网络添加了八种不同的萨格勒布多项式。从这些萨格勒布多项式,我们赶上了基于度的萨格勒布指数。我们还提供了描述拓扑指标对多项式结构的给定参数的依赖性的结果的图形表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信