On Proinov’s Lower Bound for the Diaphony

Nathan Kirk
{"title":"On Proinov’s Lower Bound for the Diaphony","authors":"Nathan Kirk","doi":"10.2478/udt-2020-0010","DOIUrl":null,"url":null,"abstract":"Abstract In 1986, Proinov published an explicit lower bound for the diaphony of finite and infinite sequences of points contained in the d−dimensional unit cube [Proinov, P. D.:On irregularities of distribution, C. R. Acad. Bulgare Sci. 39 (1986), no. 9, 31–34]. However, his widely cited paper does not contain the proof of this result but simply states that this will appear elsewhere. To the best of our knowledge, this proof was so far only available in a monograph of Proinov written in Bulgarian [Proinov, P. D.: Quantitative Theory of Uniform Distribution and Integral Approximation, University of Plovdiv, Bulgaria (2000)]. The first contribution of our paper is to give a self contained version of Proinov’s proof in English. Along the way, we improve the explicit asymptotic constants implementing recent, and corrected results of [Hinrichs, A.—Markhasin, L.: On lower bounds for the ℒ2-discrepancy, J. Complexity 27 (2011), 127–132.] and [Hinrichs, A.—Larcher, G.: An improved lower bound for the ℒ2-discrepancy, J. Complexity 34 (2016), 68–77]. (The corrections are due to a note in [Hinrichs, A.—Larcher, G. An improved lower bound for the ℒ2-discrepancy, J. Complexity 34 (2016), 68–77].) Finally, as a main result, we use the method of Proinov to derive an explicit lower bound for the dyadic diaphony of finite and infinite sequences in a similar fashion.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"6 1","pages":"39 - 72"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2020-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract In 1986, Proinov published an explicit lower bound for the diaphony of finite and infinite sequences of points contained in the d−dimensional unit cube [Proinov, P. D.:On irregularities of distribution, C. R. Acad. Bulgare Sci. 39 (1986), no. 9, 31–34]. However, his widely cited paper does not contain the proof of this result but simply states that this will appear elsewhere. To the best of our knowledge, this proof was so far only available in a monograph of Proinov written in Bulgarian [Proinov, P. D.: Quantitative Theory of Uniform Distribution and Integral Approximation, University of Plovdiv, Bulgaria (2000)]. The first contribution of our paper is to give a self contained version of Proinov’s proof in English. Along the way, we improve the explicit asymptotic constants implementing recent, and corrected results of [Hinrichs, A.—Markhasin, L.: On lower bounds for the ℒ2-discrepancy, J. Complexity 27 (2011), 127–132.] and [Hinrichs, A.—Larcher, G.: An improved lower bound for the ℒ2-discrepancy, J. Complexity 34 (2016), 68–77]. (The corrections are due to a note in [Hinrichs, A.—Larcher, G. An improved lower bound for the ℒ2-discrepancy, J. Complexity 34 (2016), 68–77].) Finally, as a main result, we use the method of Proinov to derive an explicit lower bound for the dyadic diaphony of finite and infinite sequences in a similar fashion.
论普罗尼诺夫音阶的下界
在1986年,Proinov发表了d维单位立方中包含的点的有限和无限序列的一个显式下界[Proinov, P. d.:On不规则分布,C. R.计算机科学,39 (1986),no. 6]。9, 31-34]。然而,他那篇被广泛引用的论文并没有包含这一结果的证明,而只是简单地指出,这将出现在其他地方。据我们所知,到目前为止,这个证明只在Proinov用保加利亚语写的专著中可用[Proinov, p.d.:均匀分布和积分近似的定量理论,保加利亚普罗夫迪夫大学(2000)]。本文的第一个贡献是给出了Proinov证明的一个独立的英文版本。在此过程中,我们改进了最近的显式渐近常数,并修正了[Hinrichs, A.-Markhasin, L.: On lower bounds for the 2-不同点,J. Complexity 27(2011), 127-132]的结果。[j].中文信息学报(自然科学版),2016(1),68-77。(修正是由于在[Hinrichs, a . - larcher, G. a improved lower bound for The difference, J. Complexity 34(2016), 68-77]中的注释。)最后,作为主要结果,我们用Proinov的方法以类似的方式导出了有限和无限序列的并进谐音的显下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信