Patterns in words of ordered set partitions

IF 0.4 Q4 MATHEMATICS, APPLIED
Dun Qiu, J. Remmel
{"title":"Patterns in words of ordered set partitions","authors":"Dun Qiu, J. Remmel","doi":"10.4310/JOC.2019.V10.N3.A2","DOIUrl":null,"url":null,"abstract":"An ordered set partition of $\\{1,2,\\ldots,n\\}$ is a partition with an ordering on the parts. let $\\OP_{n,k}$ be the set of ordered set partitions of $[n]$ with $k$ blocks, Godbole, Goyt, Herdan and Pudwell defined $\\OP_{n,k}(\\sigma)$ to be the set of ordered set partitions in $\\OP_{n,k}$ avoiding a permutation pattern $\\sigma$ and obtained the formula for $|\\OP_{n,k}(\\sigma)|$ when the pattern $\\sigma$ is of length $2$. Later, Chen, Dai and Zhou found a formula algebraically for $|\\OP_{n,k}(\\sigma)|$ when the pattern $\\sigma$ is of length $3$. \nIn this paper, we define a new pattern avoidance for the set $\\OP_{n,k}$, called $\\WOP_{n,k}(\\sigma)$, which includes the questions proposed by Godbole \\textit{et al.} We obtain formulas for $|\\WOP_{n,k}(\\sigma)|$ combinatorially for any $\\sigma$ of length $\\leq 3$. We also define 3 kinds of descent statistics on ordered set partitions and study the distribution of the descent statistics on $\\WOP_{n,k}(\\sigma)$ for $\\sigma$ of length $\\leq 3$.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"18 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/JOC.2019.V10.N3.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

Abstract

An ordered set partition of $\{1,2,\ldots,n\}$ is a partition with an ordering on the parts. let $\OP_{n,k}$ be the set of ordered set partitions of $[n]$ with $k$ blocks, Godbole, Goyt, Herdan and Pudwell defined $\OP_{n,k}(\sigma)$ to be the set of ordered set partitions in $\OP_{n,k}$ avoiding a permutation pattern $\sigma$ and obtained the formula for $|\OP_{n,k}(\sigma)|$ when the pattern $\sigma$ is of length $2$. Later, Chen, Dai and Zhou found a formula algebraically for $|\OP_{n,k}(\sigma)|$ when the pattern $\sigma$ is of length $3$. In this paper, we define a new pattern avoidance for the set $\OP_{n,k}$, called $\WOP_{n,k}(\sigma)$, which includes the questions proposed by Godbole \textit{et al.} We obtain formulas for $|\WOP_{n,k}(\sigma)|$ combinatorially for any $\sigma$ of length $\leq 3$. We also define 3 kinds of descent statistics on ordered set partitions and study the distribution of the descent statistics on $\WOP_{n,k}(\sigma)$ for $\sigma$ of length $\leq 3$.
用有序集划分词表示的模式
$\{1,2,\ldots,n\}$的有序集分区是一个各部分有顺序的分区。设$\OP_{n,k}$为$[n]$的有序集分区的集合,其中$k$为区块,Godbole、Goyt、Herdan和Pudwell定义$\OP_{n,k}(\sigma)$为$\OP_{n,k}$的有序集分区的集合,避免了$\sigma$的排列模式,得到了$\sigma$模式长度为$2$时$|\OP_{n,k}(\sigma)|$的公式。后来,陈、戴和周在图形$\sigma$的长度为$3$时,找到了$|\OP_{n,k}(\sigma)|$的代数公式。在本文中,我们为集合$\OP_{n,k}$定义了一个新的模式回避,称为$\WOP_{n,k}(\sigma)$,其中包含了Godbole\textit{等人提出的问题。}我们对任意长度为$\leq 3$的$\sigma$组合得到$|\WOP_{n,k}(\sigma)|$的公式。我们还定义了有序集分区上的3种下降统计量,研究了长度为$\leq 3$的$\sigma$在$\WOP_{n,k}(\sigma)$上的下降统计量的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信