Nonparametric regression with nonignorable missing covariates and outcomes using bounded inverse weighting

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Ruoxu Tan
{"title":"Nonparametric regression with nonignorable missing covariates and outcomes using bounded inverse weighting","authors":"Ruoxu Tan","doi":"10.1080/10485252.2023.2215341","DOIUrl":null,"url":null,"abstract":"We consider nonparametric regression where the covariate and the outcome variable are both subject to missingness. Previous work only discussed one of the variables that may be missing, but not both. Since missing at random is not an appropriate assumption in such a nonmonotone missing data context, we shall assume a missing not at random mechanism. We construct an inverse probability weighting local polynomial estimator based on a recently developed nonmonotone missing data model. It is well known that if the inverse probability weighting is too large at some fully observed cases, the resulting estimator would be deteriorated. To overcome this issue, we introduce a constrained maximum likelihood estimation and an estimating equations method to ensure that the resulting weighting is bounded. We prove the asymptotically normal result for the resulting regression estimator. Simulation results show good practical performance of our method. A real data example is also presented.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"329 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2023.2215341","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider nonparametric regression where the covariate and the outcome variable are both subject to missingness. Previous work only discussed one of the variables that may be missing, but not both. Since missing at random is not an appropriate assumption in such a nonmonotone missing data context, we shall assume a missing not at random mechanism. We construct an inverse probability weighting local polynomial estimator based on a recently developed nonmonotone missing data model. It is well known that if the inverse probability weighting is too large at some fully observed cases, the resulting estimator would be deteriorated. To overcome this issue, we introduce a constrained maximum likelihood estimation and an estimating equations method to ensure that the resulting weighting is bounded. We prove the asymptotically normal result for the resulting regression estimator. Simulation results show good practical performance of our method. A real data example is also presented.
非参数回归与不可忽略的缺失协变量和结果使用有界逆加权
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信