Matrix properties of textile reinforced ceramic matrix composites measured by nanoindentation

D. Davidson, G. Pharr
{"title":"Matrix properties of textile reinforced ceramic matrix composites measured by nanoindentation","authors":"D. Davidson, G. Pharr","doi":"10.1520/CTR10918J","DOIUrl":null,"url":null,"abstract":"Nanoindentation was used to measure the elastic modulus (E) and hardness (H) of the matrix materials of three ceramic composites reinforced with woven Nicalon fiber fabrics. The matrices included: (1) alumina produced by the Dimox process; (2) silicon carbide synthesized by chemical vapor infiltration; and (3) a SiC/BN material produced by polymer infiltration pyrolysis. The elastic moduli and hardnesses of the matrices of all three materials were found to be significantly lower than bulk ceramics of similar composition, probably due to porosity in the matrix and/or incomplete conversion of the infiltration materials to ceramic. Each of the composites was exposed to air at 750°C for 64 h, and measurements of E and H were made. The silicon carbide matrix was essentially unaffected, but two other materials exhibited significant reductions in both E and H caused by thermal exposure.","PeriodicalId":15514,"journal":{"name":"Journal of Composites Technology & Research","volume":"81 1","pages":"102-110"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Technology & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/CTR10918J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nanoindentation was used to measure the elastic modulus (E) and hardness (H) of the matrix materials of three ceramic composites reinforced with woven Nicalon fiber fabrics. The matrices included: (1) alumina produced by the Dimox process; (2) silicon carbide synthesized by chemical vapor infiltration; and (3) a SiC/BN material produced by polymer infiltration pyrolysis. The elastic moduli and hardnesses of the matrices of all three materials were found to be significantly lower than bulk ceramics of similar composition, probably due to porosity in the matrix and/or incomplete conversion of the infiltration materials to ceramic. Each of the composites was exposed to air at 750°C for 64 h, and measurements of E and H were made. The silicon carbide matrix was essentially unaffected, but two other materials exhibited significant reductions in both E and H caused by thermal exposure.
纳米压痕法测定纺织增强陶瓷基复合材料的基体性能
采用纳米压痕法测量了三种编织Nicalon纤维增强陶瓷复合材料的弹性模量(E)和硬度(H)。所述基质包括:(1)Dimox法生产的氧化铝;(2)化学气相渗透合成碳化硅;(3)聚合物渗透热解制备SiC/BN材料。这三种材料基体的弹性模量和硬度都明显低于相似成分的大块陶瓷,这可能是由于基体中的孔隙和/或渗透材料未完全转化为陶瓷所致。将每一种复合材料在750℃的空气中暴露64 h,并测量E和h。碳化硅基体基本上没有受到影响,但另外两种材料由于热暴露而表现出E和H的显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信