A Multiple Curve Lévy Swap Market Model

Q3 Mathematics
E. Eberlein, Christoph Gerhart, E. Lütkebohmert
{"title":"A Multiple Curve Lévy Swap Market Model","authors":"E. Eberlein, Christoph Gerhart, E. Lütkebohmert","doi":"10.1080/1350486X.2021.1877559","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we develop an arbitrage-free multiple curve model through the specification of forward swap rates. Two sets of assets are chosen as fundamentals: OIS zero-coupon bonds and forward rate agreements. This is a very natural approach since, on the one hand, OIS bonds represent the class of risk-free discount bonds and, on the other hand, the mid and long maturity part of the interest rate term structure is bootstrapped from quotes of swap rates that can be represented by FRA rates and OIS bond prices in the multiple curve setting. We construct the rates via a backward induction along the tenor structure on the basis of the forward swap measures. Time-inhomogeneous Lévy processes are used as drivers of the dynamics. As an application, we derive an approximative Fourier-based valuation formula for swaptions. The model is implemented and calibrated by using generalized hyperbolic Lévy processes as drivers.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2021.1877559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT In this paper, we develop an arbitrage-free multiple curve model through the specification of forward swap rates. Two sets of assets are chosen as fundamentals: OIS zero-coupon bonds and forward rate agreements. This is a very natural approach since, on the one hand, OIS bonds represent the class of risk-free discount bonds and, on the other hand, the mid and long maturity part of the interest rate term structure is bootstrapped from quotes of swap rates that can be represented by FRA rates and OIS bond prices in the multiple curve setting. We construct the rates via a backward induction along the tenor structure on the basis of the forward swap measures. Time-inhomogeneous Lévy processes are used as drivers of the dynamics. As an application, we derive an approximative Fourier-based valuation formula for swaptions. The model is implemented and calibrated by using generalized hyperbolic Lévy processes as drivers.
一个多曲线交换市场模型
摘要本文通过对远期掉期利率的说明,建立了一个无套利的多曲线模型。选择两组资产作为基本面:OIS零息债券和远期利率协议。这是一种非常自然的方法,因为一方面,OIS债券代表了无风险贴现债券的类别,另一方面,利率期限结构的中长期部分是由互换利率报价引导的,互换利率报价可以由FRA利率和OIS债券价格在多曲线设置中表示。我们在远期互换措施的基础上,通过沿期结构的逆向归纳来构造利率。时间非同质的lsamvy过程被用作动力学的驱动。作为应用,我们导出了交换的近似傅立叶估值公式。采用广义双曲lsamvy过程作为驱动,对模型进行了实现和标定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信