Preparation and Characterization of Surfactant Coated Ce-Zr Nanoparticles and Nanofuel

R. Sharma, S. Kanagaraj
{"title":"Preparation and Characterization of Surfactant Coated Ce-Zr Nanoparticles and Nanofuel","authors":"R. Sharma, S. Kanagaraj","doi":"10.1520/JAI104429","DOIUrl":null,"url":null,"abstract":"The use of the oxygen storing capacity (OSC) of CeO2 to enhance the conditioning of engine exhaust is being explored as a means to reduce the harmful products of emission. A doping agent, Zr, is used to further improve ceria’s OSC and thermal stability. In this study, a high OSC endowed cerium-zirconium mixed-oxide (Ce0.6Zr0.4O2) three-way catalyst (TWC) was synthesized using a surfactant assisted co-precipitation method, and a stable suspension of the mixed oxide in diesel was prepared. The characterization of the mixed oxide and nanofuel was done using different analytical techniques, and the formation of a solid solution of the mixed oxide was confirmed. A stable dispersion of mixed oxide nanoparticles in diesel was achieved with the use of a mixed alkyl chain length surfactant. The thermal conductivity of the nanofuel did not show any significant increase with an increase in TWC concentration, and the calorific value of the nanofuel decreased. It is concluded that the cerium-zirconium mixed-oxide has a much higher OSC than pure ceria and could be potentially be used for better combustion of fuel in engines.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI104429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The use of the oxygen storing capacity (OSC) of CeO2 to enhance the conditioning of engine exhaust is being explored as a means to reduce the harmful products of emission. A doping agent, Zr, is used to further improve ceria’s OSC and thermal stability. In this study, a high OSC endowed cerium-zirconium mixed-oxide (Ce0.6Zr0.4O2) three-way catalyst (TWC) was synthesized using a surfactant assisted co-precipitation method, and a stable suspension of the mixed oxide in diesel was prepared. The characterization of the mixed oxide and nanofuel was done using different analytical techniques, and the formation of a solid solution of the mixed oxide was confirmed. A stable dispersion of mixed oxide nanoparticles in diesel was achieved with the use of a mixed alkyl chain length surfactant. The thermal conductivity of the nanofuel did not show any significant increase with an increase in TWC concentration, and the calorific value of the nanofuel decreased. It is concluded that the cerium-zirconium mixed-oxide has a much higher OSC than pure ceria and could be potentially be used for better combustion of fuel in engines.
表面活性剂包覆Ce-Zr纳米颗粒及纳米燃料的制备与表征
利用CeO2的储氧能力(OSC)来增强发动机尾气的调理,是减少排放有害产物的一种手段。采用掺杂剂Zr进一步提高了氧化铈的OSC和热稳定性。本研究采用表面活性剂辅助共沉淀法合成了高盐含量的铈锆混合氧化物(Ce0.6Zr0.4O2)三元催化剂(TWC),并制备了混合氧化物在柴油中的稳定悬浮液。采用不同的分析技术对混合氧化物和纳米燃料进行了表征,并证实了混合氧化物形成了固溶体。采用混合烷基链长的表面活性剂,实现了混合氧化物纳米颗粒在柴油中的稳定分散。随着TWC浓度的增加,纳米燃料的导热系数没有显著增加,热值反而降低。结果表明,铈锆混合氧化物具有比纯氧化铈高得多的盐含量,可用于发动机燃料的更好燃烧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信