M. Stival, M. Bernardi, Manuela Cattelan, P. Dellaportas
{"title":"Missing data patterns in runners’ careers: do they matter?","authors":"M. Stival, M. Bernardi, Manuela Cattelan, P. Dellaportas","doi":"10.1093/jrsssc/qlad009","DOIUrl":null,"url":null,"abstract":"\n Predicting the future performance of young runners is an important research issue in experimental sports science and performance analysis. We analyse a dataset with annual seasonal best performances of male middle distance runners for a period of 14 years and provide a modelling framework that accounts for both the fact that each runner has typically run in 3 distance events (800, 1,500, and 5,000 m) and the presence of periods of no running activities. We propose a latent class matrix-variate state space model and we empirically demonstrate that accounting for missing data patterns in runners’ careers improves the out of sample prediction of their performances over time. In particular, we demonstrate that for this analysis, the missing data patterns provide valuable information for the prediction of runner’s performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Predicting the future performance of young runners is an important research issue in experimental sports science and performance analysis. We analyse a dataset with annual seasonal best performances of male middle distance runners for a period of 14 years and provide a modelling framework that accounts for both the fact that each runner has typically run in 3 distance events (800, 1,500, and 5,000 m) and the presence of periods of no running activities. We propose a latent class matrix-variate state space model and we empirically demonstrate that accounting for missing data patterns in runners’ careers improves the out of sample prediction of their performances over time. In particular, we demonstrate that for this analysis, the missing data patterns provide valuable information for the prediction of runner’s performance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.