Unidirectional steady-state inhomogeneous Couette flow with a quadratic velocity profile along a horizontal coordinate

L. Goruleva, E. Prosviryakov
{"title":"Unidirectional steady-state inhomogeneous Couette flow with a quadratic velocity profile along a horizontal coordinate","authors":"L. Goruleva, E. Prosviryakov","doi":"10.17804/2410-9908.2022.3.047-060","DOIUrl":null,"url":null,"abstract":"The paper presents an exact solution to the boundary value problem describing the steady-state unidirectional flow of a viscous incompressible fluid. The fluid moves in an infinite horizontal strip (infinite fluid layer). The fulfillment of the no-slip condition is postulated at the lower boundary of the viscous fluid layer. At the upper boundary, which is assumed to be rigid, non-uniform velocity distribution is specified. The deformation of the free boundary is neglected due to the use of the rigid-lid boundary condition. The exact solution to the equations of the hydrodynamics of incompressible fluids automatically satisfies the continuity equation (the incompressibility equation). The velocity function is harmonic in this case. The simplest exact solution satisfying the Laplace equation is constructed, which takes into account the features of the velocity field along the transverse (vertical) coordinate and one of the longitudinal (horizontal) coordinates. The paper analyzes the topological properties of the velocity field, the tangential stress field, the vorticity vector, specific kinetic energy, and specific helicity.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2022.3.047-060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents an exact solution to the boundary value problem describing the steady-state unidirectional flow of a viscous incompressible fluid. The fluid moves in an infinite horizontal strip (infinite fluid layer). The fulfillment of the no-slip condition is postulated at the lower boundary of the viscous fluid layer. At the upper boundary, which is assumed to be rigid, non-uniform velocity distribution is specified. The deformation of the free boundary is neglected due to the use of the rigid-lid boundary condition. The exact solution to the equations of the hydrodynamics of incompressible fluids automatically satisfies the continuity equation (the incompressibility equation). The velocity function is harmonic in this case. The simplest exact solution satisfying the Laplace equation is constructed, which takes into account the features of the velocity field along the transverse (vertical) coordinate and one of the longitudinal (horizontal) coordinates. The paper analyzes the topological properties of the velocity field, the tangential stress field, the vorticity vector, specific kinetic energy, and specific helicity.
沿水平坐标的二次速度剖面的单向稳态非均匀库埃特流
本文给出了描述粘性不可压缩流体稳态单向流动的边值问题的精确解。流体沿无限大的水平带(无限大的流体层)移动。假定在粘性流体层的下边界处满足无滑移条件。在假定为刚性的上边界处,指定了非均匀速度分布。由于采用了刚盖边界条件,忽略了自由边界的变形。不可压缩流体流体力学方程的精确解自动满足连续性方程(不可压缩方程)。在这种情况下,速度函数是调和的。构造了满足拉普拉斯方程的最简单精确解,该解考虑了速度场沿横(纵)坐标和纵(横)坐标的特征。分析了速度场、切向应力场、涡量矢量、比动能和比螺旋度的拓扑性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信