Simulation beats richness: new data-structure lower bounds

A. Chattopadhyay, M. Koucký, B. Loff, Sagnik Mukhopadhyay
{"title":"Simulation beats richness: new data-structure lower bounds","authors":"A. Chattopadhyay, M. Koucký, B. Loff, Sagnik Mukhopadhyay","doi":"10.1145/3188745.3188874","DOIUrl":null,"url":null,"abstract":"We develop a new technique for proving lower bounds in the setting of asymmetric communication, a model that was introduced in the famous works of Miltersen (STOC’94) and Miltersen, Nisan, Safra and Wigderson (STOC’95). At the core of our technique is the first simulation theorem in the asymmetric setting, where Alice gets a p × n matrix x over F2 and Bob gets a vector y ∈ F2n. Alice and Bob need to evaluate f(x· y) for a Boolean function f: {0,1}p → {0,1}. Our simulation theorems show that a deterministic/randomized communication protocol exists for this problem, with cost C· n for Alice and C for Bob, if and only if there exists a deterministic/randomized *parity decision tree* of cost Θ(C) for evaluating f. As applications of this technique, we obtain the following results: 1. The first strong lower-bounds against randomized data-structure schemes for the Vector-Matrix-Vector product problem over F2. Moreover, our method yields strong lower bounds even when the data-structure scheme has tiny advantage over random guessing. 2. The first lower bounds against randomized data-structures schemes for two natural Boolean variants of Orthogonal Vector Counting. 3. We construct an asymmetric communication problem and obtain a deterministic lower-bound for it which is provably better than any lower-bound that may be obtained by the classical Richness Method of Miltersen et al. (STOC ’95). This seems to be the first known limitation of the Richness Method in the context of proving deterministic lower bounds.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"183 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We develop a new technique for proving lower bounds in the setting of asymmetric communication, a model that was introduced in the famous works of Miltersen (STOC’94) and Miltersen, Nisan, Safra and Wigderson (STOC’95). At the core of our technique is the first simulation theorem in the asymmetric setting, where Alice gets a p × n matrix x over F2 and Bob gets a vector y ∈ F2n. Alice and Bob need to evaluate f(x· y) for a Boolean function f: {0,1}p → {0,1}. Our simulation theorems show that a deterministic/randomized communication protocol exists for this problem, with cost C· n for Alice and C for Bob, if and only if there exists a deterministic/randomized *parity decision tree* of cost Θ(C) for evaluating f. As applications of this technique, we obtain the following results: 1. The first strong lower-bounds against randomized data-structure schemes for the Vector-Matrix-Vector product problem over F2. Moreover, our method yields strong lower bounds even when the data-structure scheme has tiny advantage over random guessing. 2. The first lower bounds against randomized data-structures schemes for two natural Boolean variants of Orthogonal Vector Counting. 3. We construct an asymmetric communication problem and obtain a deterministic lower-bound for it which is provably better than any lower-bound that may be obtained by the classical Richness Method of Miltersen et al. (STOC ’95). This seems to be the first known limitation of the Richness Method in the context of proving deterministic lower bounds.
模拟胜过丰富:新的数据结构下限
我们开发了一种新的技术来证明非对称通信设置中的下界,该模型在Miltersen (STOC ' 94)和Miltersen, Nisan, Safra和Wigderson (STOC ' 95)的着作中引入。我们技术的核心是非对称设置中的第一个模拟定理,其中Alice得到一个p × n矩阵x / F2, Bob得到一个向量y∈F2n。Alice和Bob需要对布尔函数f: {0,1}p→{0,1}求值f(x·y)。我们的模拟定理表明,对于这个问题存在一个确定性/随机通信协议,Alice的成本为C·n, Bob的成本为C,当且仅当存在一个成本为Θ(C)的确定性/随机*奇偶性决策树*来评估f。作为该技术的应用,我们获得了以下结果:F2上向量-矩阵-向量积问题的随机数据结构方案的第一个强下界。此外,即使当数据结构方案比随机猜测具有微小优势时,我们的方法也会产生强大的下界。2. 正交向量计数的两种自然布尔型随机数据结构方案的第一下界。我们构造了一个非对称通信问题,并得到了它的确定性下界,证明它比Miltersen等人(STOC ' 95)的经典丰富度方法得到的任何下界都要好。这似乎是丰富性方法在证明确定性下界方面的第一个已知限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信