The effect of the 1999 total solar eclipse on the ionosphere

R.A. Bamford
{"title":"The effect of the 1999 total solar eclipse on the ionosphere","authors":"R.A. Bamford","doi":"10.1016/S1464-1917(01)00016-2","DOIUrl":null,"url":null,"abstract":"<div><p>The localised “night” created as the moon's shadow travelled across the Earth during the total solar eclipse of 11th August 1999, produced changes in the ionosphere across Europe that were monitored with a variety of modern instrumentation. The passage of the 100km wide, super-sonic lunar shadow offered the opportunity to examine the changes in electron densities, radio absorption, neutral wind patterns and the possible generation of waves in the layers of the ionosphere. All these for an event for which the cause of the disturbance can be calculated with accuracy. Reported here are the results from the vertical ionosondes located under the path of totality and in the partial eclipse region and dual frequency GPS TEC measurements. The ionosondes showed that even in the partial shadow the peak electron densities of the F &amp; E ionospheric layers decreased by as much as 20–35%. The TEC measurements showed that the vertical equivalent line integrated electron density dropped by 15% at the 97% partial eclipse north of the path of totality. The consequences of these observations are discussed in relation to making model predictions.</p></div>","PeriodicalId":101026,"journal":{"name":"Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science","volume":"26 5","pages":"Pages 373-377"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1464-1917(01)00016-2","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464191701000162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The localised “night” created as the moon's shadow travelled across the Earth during the total solar eclipse of 11th August 1999, produced changes in the ionosphere across Europe that were monitored with a variety of modern instrumentation. The passage of the 100km wide, super-sonic lunar shadow offered the opportunity to examine the changes in electron densities, radio absorption, neutral wind patterns and the possible generation of waves in the layers of the ionosphere. All these for an event for which the cause of the disturbance can be calculated with accuracy. Reported here are the results from the vertical ionosondes located under the path of totality and in the partial eclipse region and dual frequency GPS TEC measurements. The ionosondes showed that even in the partial shadow the peak electron densities of the F & E ionospheric layers decreased by as much as 20–35%. The TEC measurements showed that the vertical equivalent line integrated electron density dropped by 15% at the 97% partial eclipse north of the path of totality. The consequences of these observations are discussed in relation to making model predictions.

1999年日全食对电离层的影响
1999年8月11日的日全食期间,月球的阴影穿过地球,造成了局部的“夜晚”,在整个欧洲产生了电离层的变化,用各种现代仪器监测了这些变化。100公里宽的超音速月球阴影的通过为研究电子密度、无线电吸收、中性风模式和电离层中可能产生的波的变化提供了机会。所有这些都是针对一个可以精确计算出扰动原因的事件。这里报告的是位于日全食路径下和日偏食区域的垂直电离层探空仪和双频GPS TEC测量的结果。离子探空仪显示,即使在部分阴影下,F &电离层层减少了20-35%。TEC测量显示,在日全食路径以北97%的偏食时,垂直等效线积分电子密度下降了15%。这些观测结果的讨论与模型预测有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信