{"title":"Advances in Physiologically Relevant Actuation of Shape Memory Polymers for Biomedical Applications","authors":"Luyao Sun, Xu Gao, Decheng Wu, Qiongyu Guo","doi":"10.1080/15583724.2020.1825487","DOIUrl":null,"url":null,"abstract":"Abstract The synergistic effects of the combination of hyperthermia and chemotherapy have implicated the critical role of hyperthermia temperatures in clinical practice. Temperature sensitive polymers, which are capable of exhibiting controllable shapes under various temperature actuations, have attracted considerable interests for designing intelligent medical devices. While shape memory performances have been demonstrated with a wide range of temperatures, here we focus our discussion on shape memory polymers with physiologically relevant application temperatures and proper shape recovery speed. This review presents an overview of body-friendly thermo-responsive shape memory polymers, including commonly used biopolymers, various actuation methods, and their potential biomedical applications.","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"7 9 1","pages":"280 - 318"},"PeriodicalIF":11.1000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15583724.2020.1825487","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 21
Abstract
Abstract The synergistic effects of the combination of hyperthermia and chemotherapy have implicated the critical role of hyperthermia temperatures in clinical practice. Temperature sensitive polymers, which are capable of exhibiting controllable shapes under various temperature actuations, have attracted considerable interests for designing intelligent medical devices. While shape memory performances have been demonstrated with a wide range of temperatures, here we focus our discussion on shape memory polymers with physiologically relevant application temperatures and proper shape recovery speed. This review presents an overview of body-friendly thermo-responsive shape memory polymers, including commonly used biopolymers, various actuation methods, and their potential biomedical applications.
期刊介绍:
Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers.
The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.