Gender Prediction of Indonesian Twitter Users Using Tweet and Profile Features

Rahmad Mahendra, Hadi Syah Putra, Douglas Raevan Faisal, Fadzil Rizki
{"title":"Gender Prediction of Indonesian Twitter Users Using Tweet and Profile Features","authors":"Rahmad Mahendra, Hadi Syah Putra, Douglas Raevan Faisal, Fadzil Rizki","doi":"10.21609/jiki.v15i2.1079","DOIUrl":null,"url":null,"abstract":"The increasing use of social media generates huge amounts of data which in turn triggers research into social media analytics. Social media contents can be analyzed to explore public opinion on an issue or provide the insights reflecting proxy indicators towards real-world events. Understanding the demographics of social media users can increase the potential for applications of sentiment analysis, topic modeling, and other analytical tasks. To map demographics, we need to know the latent attributes of users, such as age, gender, occupation and location of residence. Since this attribute is not directly available, we need to do some inference from the social media data. This study aims to predict the gender attribute given a Twitter user account. We conducted experiments with several supervised classifiers with feature extraction, including the use of word embedding representations. The results of this study indicate that the combination of features extracted from Tweet contents and user profile structured data can predict the gender of Twitter users in Indonesia with accuracy above 80%.","PeriodicalId":31392,"journal":{"name":"Jurnal Ilmu Komputer dan Informasi","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmu Komputer dan Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21609/jiki.v15i2.1079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing use of social media generates huge amounts of data which in turn triggers research into social media analytics. Social media contents can be analyzed to explore public opinion on an issue or provide the insights reflecting proxy indicators towards real-world events. Understanding the demographics of social media users can increase the potential for applications of sentiment analysis, topic modeling, and other analytical tasks. To map demographics, we need to know the latent attributes of users, such as age, gender, occupation and location of residence. Since this attribute is not directly available, we need to do some inference from the social media data. This study aims to predict the gender attribute given a Twitter user account. We conducted experiments with several supervised classifiers with feature extraction, including the use of word embedding representations. The results of this study indicate that the combination of features extracted from Tweet contents and user profile structured data can predict the gender of Twitter users in Indonesia with accuracy above 80%.
印尼Twitter用户性别预测研究
越来越多的社交媒体使用产生了大量的数据,这些数据反过来又引发了对社交媒体分析的研究。对社交媒体内容的分析可以用来探索公众对某一问题的看法,或者提供反映真实世界事件的代理指标的见解。了解社交媒体用户的人口统计数据可以增加情感分析、主题建模和其他分析任务的应用潜力。为了绘制人口统计图,我们需要知道用户的潜在属性,如年龄、性别、职业和居住地。由于这个属性不是直接可用的,我们需要从社交媒体数据中做一些推断。本研究旨在预测给定Twitter用户帐户的性别属性。我们用几个带有特征提取的监督分类器进行了实验,包括使用词嵌入表示。本研究结果表明,结合从Twitter内容中提取的特征和用户个人资料结构化数据,可以预测印度尼西亚Twitter用户的性别,准确率在80%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信