Long-time behavior of a nonautonomous stochastic predator–prey model with jumps

IF 0.7 Q3 STATISTICS & PROBABILITY
O. Borysenko, O. Borysenko
{"title":"Long-time behavior of a nonautonomous stochastic predator–prey model with jumps","authors":"O. Borysenko, O. Borysenko","doi":"10.15559/21-VMSTA173","DOIUrl":null,"url":null,"abstract":"It is proved the existence and uniqueness of the global positive solution to the system of stochastic differential equations describing a non-autonomous stochastic predator-prey model with a modified version of Leslie-Gower and Holling-type II functional response disturbed by white noise, centered and non-centered Poisson noises. We obtain sufficient conditions of stochastic ultimate boundedness, stochastic permanence, non-persistence in the mean, weak persistence in the mean, and extinction of the solution to the considered system.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"106 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/21-VMSTA173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

It is proved the existence and uniqueness of the global positive solution to the system of stochastic differential equations describing a non-autonomous stochastic predator-prey model with a modified version of Leslie-Gower and Holling-type II functional response disturbed by white noise, centered and non-centered Poisson noises. We obtain sufficient conditions of stochastic ultimate boundedness, stochastic permanence, non-persistence in the mean, weak persistence in the mean, and extinction of the solution to the considered system.
具有跳跃的非自治随机捕食者-猎物模型的长时间行为
证明了一类具有修正版Leslie-Gower和holling型II型功能响应的非自治随机捕食-食饵模型的随机微分方程系统整体正解的存在唯一性,该模型受白噪声、中心泊松噪声和非中心泊松噪声干扰。得到了系统解的随机极限有界性、随机持久性、均值非持久性、均值弱持久性和消光性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信