Information criteria for inhomogeneous spatial point processes

Pub Date : 2021-05-08 DOI:10.1111/anzs.12327
Achmad Choiruddin, Jean-François Coeurjolly, Rasmus Waagepetersen
{"title":"Information criteria for inhomogeneous spatial point processes","authors":"Achmad Choiruddin,&nbsp;Jean-François Coeurjolly,&nbsp;Rasmus Waagepetersen","doi":"10.1111/anzs.12327","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The theoretical foundation for a number of model selection criteria is established in the context of inhomogeneous point processes and under various asymptotic settings: infill, increasing domain and combinations of these. For inhomogeneous Poisson processes we consider Akaike's information criterion and the Bayesian information criterion, and in particular we identify the point process analogue of ‘sample size’ needed for the Bayesian information criterion. Considering general inhomogeneous point processes we derive new composite likelihood and composite Bayesian information criteria for selecting a regression model for the intensity function. The proposed model selection criteria are evaluated using simulations of Poisson processes and cluster point processes.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/anzs.12327","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The theoretical foundation for a number of model selection criteria is established in the context of inhomogeneous point processes and under various asymptotic settings: infill, increasing domain and combinations of these. For inhomogeneous Poisson processes we consider Akaike's information criterion and the Bayesian information criterion, and in particular we identify the point process analogue of ‘sample size’ needed for the Bayesian information criterion. Considering general inhomogeneous point processes we derive new composite likelihood and composite Bayesian information criteria for selecting a regression model for the intensity function. The proposed model selection criteria are evaluated using simulations of Poisson processes and cluster point processes.

分享
查看原文
非齐次空间点过程的信息准则
在非齐次点过程和各种渐近设置下建立了许多模型选择准则的理论基础:填充,增加域和这些的组合。对于非齐次泊松过程,我们考虑赤池的信息准则和贝叶斯信息准则,特别是我们确定了贝叶斯信息准则所需的“样本量”的点过程模拟。考虑到一般的非齐次点过程,我们提出了新的复合似然和复合贝叶斯信息准则来选择强度函数的回归模型。利用泊松过程和聚类点过程的模拟对所提出的模型选择准则进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信