Edge Intelligence for Beyond-5G through Federated Learning

Shashank Jere, Y. Yi
{"title":"Edge Intelligence for Beyond-5G through Federated Learning","authors":"Shashank Jere, Y. Yi","doi":"10.1145/3453142.3493519","DOIUrl":null,"url":null,"abstract":"The computational capabilities of mobile devices have been advancing at a rapid pace in recent times, leading to a growing interest in deploying machine learning applications on such devices. In parallel, Mobile Edge Computing (MEC) has gained traction as a potential enabler for many applications in 5G and Beyond-5G networks, paving the path for making edge devices more intelligent through distributed learning strategies. In this article, we overview the application of federated learning (FL), a novel privacy-preserving distributed learning strategy, within the context of MEC. Minimizing communications latency involved in FL tasks as well as optimizing FL tasks for resource-constrained Internet of Things (IoT) devices are investigated.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"130 1","pages":"345-349"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3493519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The computational capabilities of mobile devices have been advancing at a rapid pace in recent times, leading to a growing interest in deploying machine learning applications on such devices. In parallel, Mobile Edge Computing (MEC) has gained traction as a potential enabler for many applications in 5G and Beyond-5G networks, paving the path for making edge devices more intelligent through distributed learning strategies. In this article, we overview the application of federated learning (FL), a novel privacy-preserving distributed learning strategy, within the context of MEC. Minimizing communications latency involved in FL tasks as well as optimizing FL tasks for resource-constrained Internet of Things (IoT) devices are investigated.
通过联邦学习实现超越5g的边缘智能
近年来,移动设备的计算能力一直在快速发展,导致人们对在此类设备上部署机器学习应用程序的兴趣日益浓厚。与此同时,移动边缘计算(MEC)作为5G和超5G网络中许多应用的潜在推动者,已经获得了牵引力,为通过分布式学习策略使边缘设备更加智能铺平了道路。在本文中,我们概述了联邦学习(FL)在MEC背景下的应用,这是一种新颖的保护隐私的分布式学习策略。研究了最小化FL任务中涉及的通信延迟以及优化资源受限的物联网(IoT)设备的FL任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信