Effective Heuristic Techniques for Combined Robust Clustering Problem

Yunhe Xu, Chenchen Wu, Ling Gai, Lu Han
{"title":"Effective Heuristic Techniques for Combined Robust Clustering Problem","authors":"Yunhe Xu, Chenchen Wu, Ling Gai, Lu Han","doi":"10.1142/s0217595922400097","DOIUrl":null,"url":null,"abstract":"Clustering is one of the most important problems in the fields of data mining, machine learning, and biological population division, etc. Moreover, robust variant for [Formula: see text]-means problem, which includes [Formula: see text]-means with penalties and [Formula: see text]-means with outliers, is also an active research branch. Most of these problems are NP-hard even the most classical problem, [Formula: see text]-means problem. For the NP-hard problems, the heuristic algorithm is a powerful method. When the quality of the output can be guaranteed, the algorithm is called an approximation algorithm. In this paper, combining two types of robust settings, we consider [Formula: see text]-means problem with penalties and outliers ([Formula: see text]-MPO). In the [Formula: see text]-MPO, we are given an [Formula: see text]-point set [Formula: see text], a penalty cost [Formula: see text] for each [Formula: see text], an integer [Formula: see text], and an integer [Formula: see text]. The target is to find a center subset [Formula: see text] with [Formula: see text], a penalty subset [Formula: see text] and an outlier subset [Formula: see text] with [Formula: see text], such that the sum of the total costs, including the connection cost and the penalty cost, is minimized. We offer an approximation algorithm using a heuristic local search scheme. Based on a single-swap manipulation, we obtain [Formula: see text]-approximation algorithm.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217595922400097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is one of the most important problems in the fields of data mining, machine learning, and biological population division, etc. Moreover, robust variant for [Formula: see text]-means problem, which includes [Formula: see text]-means with penalties and [Formula: see text]-means with outliers, is also an active research branch. Most of these problems are NP-hard even the most classical problem, [Formula: see text]-means problem. For the NP-hard problems, the heuristic algorithm is a powerful method. When the quality of the output can be guaranteed, the algorithm is called an approximation algorithm. In this paper, combining two types of robust settings, we consider [Formula: see text]-means problem with penalties and outliers ([Formula: see text]-MPO). In the [Formula: see text]-MPO, we are given an [Formula: see text]-point set [Formula: see text], a penalty cost [Formula: see text] for each [Formula: see text], an integer [Formula: see text], and an integer [Formula: see text]. The target is to find a center subset [Formula: see text] with [Formula: see text], a penalty subset [Formula: see text] and an outlier subset [Formula: see text] with [Formula: see text], such that the sum of the total costs, including the connection cost and the penalty cost, is minimized. We offer an approximation algorithm using a heuristic local search scheme. Based on a single-swap manipulation, we obtain [Formula: see text]-approximation algorithm.
组合鲁棒聚类问题的有效启发式技术
聚类是数据挖掘、机器学习、生物种群划分等领域的重要问题之一。此外,[公式:见文]均值问题的鲁棒变体,包括[公式:见文]-带惩罚的均值和[公式:见文]-带异常值的均值,也是一个活跃的研究分支。这些问题中的大多数都是np困难问题,即使是最经典的问题,[公式:见文本]-均值问题。对于np困难问题,启发式算法是一种强有力的方法。当能保证输出的质量时,该算法称为近似算法。在本文中,结合两种类型的鲁棒设置,我们考虑[公式:见文本]-具有惩罚和异常值([公式:见文本]-MPO)的均值问题。在[公式:见文本]-MPO中,我们得到一个[公式:见文本]-点集[公式:见文本],每个[公式:见文本]的惩罚成本[公式:见文本],一个整数[公式:见文本]和一个整数[公式:见文本]。目标是用[公式:见文]找到一个中心子集[公式:见文],一个惩罚子集[公式:见文]和一个离群子集[公式:见文],使包括连接成本和惩罚成本在内的总成本之和最小。我们提出了一种使用启发式局部搜索方案的近似算法。基于单交换操作,我们得到[公式:见文本]-近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信