Multiscale, curvature-based shape representation for surfaces

Ruirui Jiang, X. Gu
{"title":"Multiscale, curvature-based shape representation for surfaces","authors":"Ruirui Jiang, X. Gu","doi":"10.1109/ICCV.2011.6126457","DOIUrl":null,"url":null,"abstract":"This paper presents a multiscale, curvature-based shape representation technique for general genus zero closed surfaces. The method is invariant under rotation, translation, scaling, or general isometric deformations; it is robust to noise and preserves intrinsic symmetry. The method is a direct generalization of the Curvature Scale Space (CSS) shape descriptor for planar curves. In our method, the Riemannian metric of the surface is deformed under Ricci flow, such that the Gaussian curvature evolves according to a heat diffusion process. Eventually the surface becomes a sphere with constant positive curvature everywhere. The evolution of zero curvature curves on the surface is utilized as the shape descriptor. Our experimental results on a 3D geometric database with about 80 shapes demonstrate the efficiency and efficacy of the method.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"12 1","pages":"1887-1894"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a multiscale, curvature-based shape representation technique for general genus zero closed surfaces. The method is invariant under rotation, translation, scaling, or general isometric deformations; it is robust to noise and preserves intrinsic symmetry. The method is a direct generalization of the Curvature Scale Space (CSS) shape descriptor for planar curves. In our method, the Riemannian metric of the surface is deformed under Ricci flow, such that the Gaussian curvature evolves according to a heat diffusion process. Eventually the surface becomes a sphere with constant positive curvature everywhere. The evolution of zero curvature curves on the surface is utilized as the shape descriptor. Our experimental results on a 3D geometric database with about 80 shapes demonstrate the efficiency and efficacy of the method.
曲面的多尺度、基于曲率的形状表示
本文提出了一种多尺度、基于曲率的一般零属封闭曲面形状表示方法。该方法在旋转、平移、缩放或一般等距变形下是不变的;它对噪声具有鲁棒性,并保持了固有的对称性。该方法是平面曲线曲率尺度空间(CSS)形状描述符的直接推广。在我们的方法中,表面的黎曼度规在里奇流下变形,使得高斯曲率根据热扩散过程演变。最终,这个表面变成了一个处处都有恒定正曲率的球体。利用零曲率曲线在曲面上的演化作为形状描述符。在约80个几何形状的三维几何数据库上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信