A. Akimov, N. Sviridenko, M. Morozov, S. Panin, V. Aleksenko, V. Vlasov, A. V. Vosmerikov
{"title":"Structural changes and chemistry of petroleum macromolecular components during thermocatalytic processing","authors":"A. Akimov, N. Sviridenko, M. Morozov, S. Panin, V. Aleksenko, V. Vlasov, A. V. Vosmerikov","doi":"10.1063/1.5131874","DOIUrl":null,"url":null,"abstract":"The work is devoted to the study of high-molecular components (asphaltenes) of petroleum and its products. The relevance of research aimed at studying structural changes and the chemistry of thermocatalytic transformations of asphaltenes in the conditions of heavy residual feedstock processing processes increases every year. X-ray parameters (phase composition, structural characteristics), thermal stability and thermal effects were studied using the following methods: powder X-ray diffraction method, simultaneous thermal analysis combining the methods of thermogravimetry, differential scanning calorimetry and mass spectrometric analysis of gaseous products.The work is devoted to the study of high-molecular components (asphaltenes) of petroleum and its products. The relevance of research aimed at studying structural changes and the chemistry of thermocatalytic transformations of asphaltenes in the conditions of heavy residual feedstock processing processes increases every year. X-ray parameters (phase composition, structural characteristics), thermal stability and thermal effects were studied using the following methods: powder X-ray diffraction method, simultaneous thermal analysis combining the methods of thermogravimetry, differential scanning calorimetry and mass spectrometric analysis of gaseous products.","PeriodicalId":20637,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5131874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The work is devoted to the study of high-molecular components (asphaltenes) of petroleum and its products. The relevance of research aimed at studying structural changes and the chemistry of thermocatalytic transformations of asphaltenes in the conditions of heavy residual feedstock processing processes increases every year. X-ray parameters (phase composition, structural characteristics), thermal stability and thermal effects were studied using the following methods: powder X-ray diffraction method, simultaneous thermal analysis combining the methods of thermogravimetry, differential scanning calorimetry and mass spectrometric analysis of gaseous products.The work is devoted to the study of high-molecular components (asphaltenes) of petroleum and its products. The relevance of research aimed at studying structural changes and the chemistry of thermocatalytic transformations of asphaltenes in the conditions of heavy residual feedstock processing processes increases every year. X-ray parameters (phase composition, structural characteristics), thermal stability and thermal effects were studied using the following methods: powder X-ray diffraction method, simultaneous thermal analysis combining the methods of thermogravimetry, differential scanning calorimetry and mass spectrometric analysis of gaseous products.