Bayesian indoor positioning systems

D. Madigan, E. Einahrawy, R. Martin, Wen-Hua Ju, P. Krishnan, A. Krishnakumar
{"title":"Bayesian indoor positioning systems","authors":"D. Madigan, E. Einahrawy, R. Martin, Wen-Hua Ju, P. Krishnan, A. Krishnakumar","doi":"10.1109/INFCOM.2005.1498348","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new approach to location estimation where, instead of locating a single client, we simultaneously locate a set of wireless clients. We present a Bayesian hierarchical model for indoor location estimation in wireless networks. We demonstrate that our model achieves accuracy that is similar to other published models and algorithms. By harnessing prior knowledge, our model eliminates the requirement for training data as compared with existing approaches, thereby introducing the notion of a fully adaptive zero profiling approach to location estimation.","PeriodicalId":20482,"journal":{"name":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","volume":"52 56 1","pages":"1217-1227 vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"421","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2005.1498348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 421

Abstract

In this paper, we introduce a new approach to location estimation where, instead of locating a single client, we simultaneously locate a set of wireless clients. We present a Bayesian hierarchical model for indoor location estimation in wireless networks. We demonstrate that our model achieves accuracy that is similar to other published models and algorithms. By harnessing prior knowledge, our model eliminates the requirement for training data as compared with existing approaches, thereby introducing the notion of a fully adaptive zero profiling approach to location estimation.
贝叶斯室内定位系统
在本文中,我们介绍了一种新的位置估计方法,该方法不是定位单个客户端,而是同时定位一组无线客户端。提出了一种用于无线网络室内位置估计的贝叶斯层次模型。我们证明了我们的模型达到了与其他已发表的模型和算法相似的精度。通过利用先验知识,与现有方法相比,我们的模型消除了对训练数据的需求,从而引入了完全自适应零剖析方法的概念来进行位置估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信