Applying wrapper-based variable selection techniques to predict MFIs profitability: evidence from Peru

IF 0.9 4区 经济学 Q4 DEVELOPMENT STUDIES
Fabio Pietrapiana, J. Feria‐Dominguez, A. Troncoso
{"title":"Applying wrapper-based variable selection techniques to predict MFIs profitability: evidence from Peru","authors":"Fabio Pietrapiana, J. Feria‐Dominguez, A. Troncoso","doi":"10.1080/19439342.2021.1884119","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we analyse the main factors explaining the profitability (ROA) of Microfinance Institutions (MFIs) in Peru from 2011 to 2107. We apply three wrapper techniques to asample of 168 Peruvians MFIs and 69 attributes obtained from MIX Market database. After running the algorithms M5ʹ, knearest neighbours (KNN) and Random Forest, we find that the M5ʹ algorithm provides the best fit for predicting ROA. Particularly, the key variable of the regression tree is the percentage of expenses over assets and, depending on its value, it is followed by net income after taxes and before donations, or profit margins.","PeriodicalId":46384,"journal":{"name":"Journal of Development Effectiveness","volume":"20 1","pages":"84 - 99"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Development Effectiveness","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/19439342.2021.1884119","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENT STUDIES","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT In this paper, we analyse the main factors explaining the profitability (ROA) of Microfinance Institutions (MFIs) in Peru from 2011 to 2107. We apply three wrapper techniques to asample of 168 Peruvians MFIs and 69 attributes obtained from MIX Market database. After running the algorithms M5ʹ, knearest neighbours (KNN) and Random Forest, we find that the M5ʹ algorithm provides the best fit for predicting ROA. Particularly, the key variable of the regression tree is the percentage of expenses over assets and, depending on its value, it is followed by net income after taxes and before donations, or profit margins.
应用基于包装的变量选择技术来预测小额信贷机构的盈利能力:来自秘鲁的证据
本文分析了2011年至2007年秘鲁小额信贷机构(mfi)盈利能力(ROA)的主要影响因素。我们应用三种包装技术对168个秘鲁小额信贷机构和69个属性从MIX市场数据库中获得的样本。在对M5′、KNN算法和随机森林算法进行比较后,我们发现M5′算法对预测ROA具有最佳的拟合性。特别是,回归树的关键变量是费用占资产的百分比,根据其价值,紧随其后的是税后和捐赠前的净收入,或利润率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信