$C_p$ estimates for rough homogeneous singular integrals and sparse forms

J. Canto, Kangwei Li, L. Roncal, Olli Tapiola
{"title":"$C_p$ estimates for rough homogeneous singular integrals and sparse forms","authors":"J. Canto, Kangwei Li, L. Roncal, Olli Tapiola","doi":"10.2422/2036-2145.201910_008","DOIUrl":null,"url":null,"abstract":"We consider Coifman--Fefferman inequalities for rough homogeneous singular integrals $T_\\Omega$ and $C_p$ weights. It was recently shown by Li-Perez-Rivera-Rios-Roncal that $$ \n\\|T_\\Omega \\|_{L^p(w)} \\le C_{p,T,w} \\|Mf\\|_{L^p(w)} $$ for every $0 \\max\\{1,p\\}$ without using extrapolation theory. Although the bounds we prove are new even in a qualitative sense, we also give the quantitative bound with respect to the $C_q$ characteristic. Our techniques rely on recent advances in sparse domination theory and we actually prove most of our estimates for sparse forms. \nOur second goal is to continue the structural analysis of $C_p$ classes. We consider some weak self-improving properties of $C_p$ weights and weak and dyadic $C_p$ classes. We also revisit and generalize a counterexample by Kahanpaa and Mejlbro who showed that $C_p \\setminus \\bigcup_{q > p} C_q \\neq \\emptyset$. We combine their construction with techniques of Lerner to define an explicit weight class $\\widetilde{C}_p$ such that $\\bigcup_{q > p} C_q \\subsetneq \\widetilde{C}_p \\subsetneq C_p$ and every $w \\in \\widetilde{C}_p$ satisfies Muckenhoupt's conjecture. In particular, we give a different, self-contained proof for the fact that the $C_{p+\\varepsilon}$ condition is not necessary for the Coifman--Fefferman inequality and our ideas allow us to consider also dimensions higher than $1$.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.201910_008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We consider Coifman--Fefferman inequalities for rough homogeneous singular integrals $T_\Omega$ and $C_p$ weights. It was recently shown by Li-Perez-Rivera-Rios-Roncal that $$ \|T_\Omega \|_{L^p(w)} \le C_{p,T,w} \|Mf\|_{L^p(w)} $$ for every $0 \max\{1,p\}$ without using extrapolation theory. Although the bounds we prove are new even in a qualitative sense, we also give the quantitative bound with respect to the $C_q$ characteristic. Our techniques rely on recent advances in sparse domination theory and we actually prove most of our estimates for sparse forms. Our second goal is to continue the structural analysis of $C_p$ classes. We consider some weak self-improving properties of $C_p$ weights and weak and dyadic $C_p$ classes. We also revisit and generalize a counterexample by Kahanpaa and Mejlbro who showed that $C_p \setminus \bigcup_{q > p} C_q \neq \emptyset$. We combine their construction with techniques of Lerner to define an explicit weight class $\widetilde{C}_p$ such that $\bigcup_{q > p} C_q \subsetneq \widetilde{C}_p \subsetneq C_p$ and every $w \in \widetilde{C}_p$ satisfies Muckenhoupt's conjecture. In particular, we give a different, self-contained proof for the fact that the $C_{p+\varepsilon}$ condition is not necessary for the Coifman--Fefferman inequality and our ideas allow us to consider also dimensions higher than $1$.
粗糙齐次奇异积分和稀疏形式的C_p估计
我们考虑粗糙齐次奇异积分$T_\Omega$和$C_p$权值的Coifman—Fefferman不等式。最近,Li-Perez-Rivera-Rios-Roncal证明了$$ \|T_\Omega \|_{L^p(w)} \le C_{p,T,w} \|Mf\|_{L^p(w)} $$对于每一个$0 \max\{1,p\}$,不用外推理论。虽然我们证明的界是新的,甚至在定性意义上,我们也给出了关于$C_q$特征的定量界。我们的技术依赖于稀疏支配理论的最新进展,我们实际上证明了我们对稀疏形式的大多数估计。我们的第二个目标是继续$C_p$类的结构分析。我们考虑了$C_p$权值和弱和二进$C_p$类的一些弱自改进性质。我们还回顾并概括了Kahanpaa和Mejlbro的反例,他们证明了$C_p \setminus \bigcup_{q > p} C_q \neq \emptyset$。我们将它们的构造与Lerner的技术结合起来定义一个显式权重类$\widetilde{C}_p$,使得$\bigcup_{q > p} C_q \subsetneq \widetilde{C}_p \subsetneq C_p$和每个$w \in \widetilde{C}_p$满足Muckenhoupt的猜想。特别是,我们给出了一个不同的,独立的证明,证明$C_{p+\varepsilon}$条件对于Coifman- Fefferman不等式不是必需的,并且我们的想法允许我们考虑高于$1$的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信