Nanoantennas design for THz communication: material selection and performance enhancement

Sasmita Dash, C. Liaskos, I. Akyildiz, A. Pitsillides
{"title":"Nanoantennas design for THz communication: material selection and performance enhancement","authors":"Sasmita Dash, C. Liaskos, I. Akyildiz, A. Pitsillides","doi":"10.1145/3411295.3411312","DOIUrl":null,"url":null,"abstract":"In the development of terahertz (THz) communication systems, the nanoantenna is the most significant component. Especially, the focus is to design highly directive antennas, because it enhances the performance of the overall system by compensating the large path loss at THz and thus improves the signal-to-noise ratio. This paper presents suitable material for nanoantenna design and the advancement in their performance for THz communications. Copper, Graphene, and carbon nanotube materials are used as promising candidates for nanoantenna design. The performance of nanoantennas is carried out by analyzing the properties and behavior of the material at THz. Results show that the Graphene nanoantenna provides better performance in terms of miniaturization, directivity, and radiation efficiency. Further, the performance enhancement of the nanoantenna at THz is studied by dynamically adjusting the surface conductivity via the chemical potential of Graphene using the electric field effect. The performance of the nanoantenna is enhanced in terms of high miniaturization, high directivity, low reflection, frequency reconfiguration, and stable impedance. The THz nanoantennas using Graphene have the potential to be used for THz communication systems. In view of the smart THz wireless environment; this paper finally presents a THz Hypersurface using Graphene meta-atoms. The user-side Graphene nanoantennas and environment-side Graphene Hypersurface can build a promising smart THz wireless environment.","PeriodicalId":93611,"journal":{"name":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411295.3411312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the development of terahertz (THz) communication systems, the nanoantenna is the most significant component. Especially, the focus is to design highly directive antennas, because it enhances the performance of the overall system by compensating the large path loss at THz and thus improves the signal-to-noise ratio. This paper presents suitable material for nanoantenna design and the advancement in their performance for THz communications. Copper, Graphene, and carbon nanotube materials are used as promising candidates for nanoantenna design. The performance of nanoantennas is carried out by analyzing the properties and behavior of the material at THz. Results show that the Graphene nanoantenna provides better performance in terms of miniaturization, directivity, and radiation efficiency. Further, the performance enhancement of the nanoantenna at THz is studied by dynamically adjusting the surface conductivity via the chemical potential of Graphene using the electric field effect. The performance of the nanoantenna is enhanced in terms of high miniaturization, high directivity, low reflection, frequency reconfiguration, and stable impedance. The THz nanoantennas using Graphene have the potential to be used for THz communication systems. In view of the smart THz wireless environment; this paper finally presents a THz Hypersurface using Graphene meta-atoms. The user-side Graphene nanoantennas and environment-side Graphene Hypersurface can build a promising smart THz wireless environment.
用于太赫兹通信的纳米天线设计:材料选择和性能增强
在太赫兹通信系统的发展中,纳米天线是最重要的组成部分。特别是设计高度定向的天线,因为它通过补偿太赫兹下的大路径损耗来提高整个系统的性能,从而提高信噪比。本文介绍了设计纳米天线的合适材料及其在太赫兹通信中的性能进展。铜、石墨烯和碳纳米管材料被用作纳米天线设计的有前途的候选材料。通过分析材料在太赫兹下的特性和行为,对纳米天线的性能进行了分析。结果表明,石墨烯纳米天线在小型化、指向性和辐射效率方面具有更好的性能。此外,利用电场效应,通过石墨烯的化学势动态调节表面电导率,研究了纳米天线在太赫兹下的性能增强。该纳米天线具有高度小型化、高指向性、低反射、频率重构和阻抗稳定等特点。使用石墨烯的太赫兹纳米天线具有用于太赫兹通信系统的潜力。针对智能太赫兹无线环境;本文最后提出了一种使用石墨烯元原子的太赫兹超表面。用户端石墨烯纳米天线和环境端石墨烯超表面可以构建一个有前景的智能太赫兹无线环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信