CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong Yu, Haiming Jin, Z. Li
{"title":"CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario","authors":"Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong Yu, Haiming Jin, Z. Li","doi":"10.1145/3308558.3314139","DOIUrl":null,"url":null,"abstract":"Traffic signal control is an emerging application scenario for reinforcement learning. Besides being as an important problem that affects people's daily life in commuting, traffic signal control poses its unique challenges for reinforcement learning in terms of adapting to dynamic traffic environment and coordinating thousands of agents including vehicles and pedestrians. A key factor in the success of modern reinforcement learning relies on a good simulator to generate a large number of data samples for learning. The most commonly used open-source traffic simulator SUMO is, however, not scalable to large road network and large traffic flow, which hinders the study of reinforcement learning on traffic scenarios. This motivates us to create a new traffic simulator CityFlow with fundamentally optimized data structures and efficient algorithms. CityFlow can support flexible definitions for road network and traffic flow based on synthetic and real-world data. It also provides user-friendly interface for reinforcement learning. Most importantly, CityFlow is more than twenty times faster than SUMO and is capable of supporting city-wide traffic simulation with an interactive render for monitoring. Besides traffic signal control, CityFlow could serve as the base for other transportation studies and can create new possibilities to test machine learning methods in the intelligent transportation domain.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"171","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3314139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 171

Abstract

Traffic signal control is an emerging application scenario for reinforcement learning. Besides being as an important problem that affects people's daily life in commuting, traffic signal control poses its unique challenges for reinforcement learning in terms of adapting to dynamic traffic environment and coordinating thousands of agents including vehicles and pedestrians. A key factor in the success of modern reinforcement learning relies on a good simulator to generate a large number of data samples for learning. The most commonly used open-source traffic simulator SUMO is, however, not scalable to large road network and large traffic flow, which hinders the study of reinforcement learning on traffic scenarios. This motivates us to create a new traffic simulator CityFlow with fundamentally optimized data structures and efficient algorithms. CityFlow can support flexible definitions for road network and traffic flow based on synthetic and real-world data. It also provides user-friendly interface for reinforcement learning. Most importantly, CityFlow is more than twenty times faster than SUMO and is capable of supporting city-wide traffic simulation with an interactive render for monitoring. Besides traffic signal control, CityFlow could serve as the base for other transportation studies and can create new possibilities to test machine learning methods in the intelligent transportation domain.
CityFlow:大规模城市交通场景的多智能体强化学习环境
交通信号控制是强化学习的一个新兴应用场景。交通信号控制作为影响人们日常通勤生活的重要问题,在适应动态交通环境、协调包括车辆和行人在内的数千个智能体方面,对强化学习提出了独特的挑战。现代强化学习成功的一个关键因素是依靠一个好的模拟器来生成大量的数据样本进行学习。然而,目前最常用的开源交通模拟器SUMO不能扩展到大型路网和大交通流,这阻碍了交通场景下强化学习的研究。这促使我们创建一个新的交通模拟器CityFlow,从根本上优化了数据结构和有效的算法。CityFlow可以支持基于合成和真实数据的道路网络和交通流的灵活定义。它还为强化学习提供了用户友好的界面。最重要的是,CityFlow比SUMO快20倍以上,并且能够支持城市范围内的交通模拟,并提供交互式渲染以进行监控。除了交通信号控制,CityFlow还可以作为其他交通研究的基础,为智能交通领域测试机器学习方法创造新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信