Lightweight Image Dehazing Algorithm Based on Detail Feature Enhancement

IF 2 3区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chenxing Gao, Lingjun Chen, Caidan Zhao, Xiangyu Huang, Zhiqiang Wu
{"title":"Lightweight Image Dehazing Algorithm Based on Detail Feature Enhancement","authors":"Chenxing Gao, Lingjun Chen, Caidan Zhao, Xiangyu Huang, Zhiqiang Wu","doi":"10.1109/CSCWD57460.2023.10152843","DOIUrl":null,"url":null,"abstract":"Haze can reduce the visibility of the captured image, making it hard to accurately distinguish the details of each object in the captured image scene. Aiming at the problem of detail loss in existing dehazing models, this paper proposes a lightweight end-to-end image dehazing framework called DFE-GAN (Detail Feature Enhancement-GAN). The missing detail contours in the haze image can be predicted by employing a densely connected detail feature prediction network. Supplemented with a patch discriminator and an improved loss function, the restoration of details in the dehazing image is enhanced to improve image quality. We apply inverse residual modules to extract and fuse multi-scale features from images, which can ensure the real-time processing capability of the model. Compared with previous state-of-the-art approaches, solid experimental results on various benchmark datasets validate the robustness and effectiveness of our model.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"4 1","pages":"1538-1543"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152843","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Haze can reduce the visibility of the captured image, making it hard to accurately distinguish the details of each object in the captured image scene. Aiming at the problem of detail loss in existing dehazing models, this paper proposes a lightweight end-to-end image dehazing framework called DFE-GAN (Detail Feature Enhancement-GAN). The missing detail contours in the haze image can be predicted by employing a densely connected detail feature prediction network. Supplemented with a patch discriminator and an improved loss function, the restoration of details in the dehazing image is enhanced to improve image quality. We apply inverse residual modules to extract and fuse multi-scale features from images, which can ensure the real-time processing capability of the model. Compared with previous state-of-the-art approaches, solid experimental results on various benchmark datasets validate the robustness and effectiveness of our model.
基于细节特征增强的轻量化图像去雾算法
雾霾会降低捕获图像的可见度,难以准确区分捕获图像场景中每个物体的细节。针对现有图像去雾模型中存在的细节丢失问题,提出了一种轻量级的端到端图像去雾框架DFE-GAN (detail Feature Enhancement-GAN)。利用密集连接的细节特征预测网络可以预测雾霾图像中缺失的细节轮廓。补充了补丁鉴别器和改进的损失函数,增强了去雾图像中细节的恢复,提高了图像质量。利用残差逆模对图像进行多尺度特征提取和融合,保证了模型的实时性。与以往最先进的方法相比,在各种基准数据集上的可靠实验结果验证了我们模型的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Supported Cooperative Work-The Journal of Collaborative Computing
Computer Supported Cooperative Work-The Journal of Collaborative Computing COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.40
自引率
4.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW. The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas. The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信