Location privacy-protection based on p-destination in mobile social networks: A game theory analysis

Bidi Ying, A. Nayak
{"title":"Location privacy-protection based on p-destination in mobile social networks: A game theory analysis","authors":"Bidi Ying, A. Nayak","doi":"10.1109/DESEC.2017.8073812","DOIUrl":null,"url":null,"abstract":"k-anonymity and l-diversity are widely discussed means of controlling the degree of privacy loss when personal information is processed for data analytics. User privacy can easily be disclosed by tracking its past/future locations. In this paper, we propose a Location Privacy Protection (LPP) method which enables a trusted third party to aggregate location-aware requests based on p-destination in mobile social networks. Our LPP can prevent an attacker from associating users' identities, locations and query contents. We also propose a hide-and-seek game-theoretic model for developing defense strategies for the rational trusted third party in dealing with a rational attacker. Detailed analysis is provided for choosing strategies that maximize payoffs, and simulation results are provided to demonstrate that our proposed method protects user privacy.","PeriodicalId":92346,"journal":{"name":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","volume":"83 1","pages":"243-250"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DESEC.2017.8073812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

k-anonymity and l-diversity are widely discussed means of controlling the degree of privacy loss when personal information is processed for data analytics. User privacy can easily be disclosed by tracking its past/future locations. In this paper, we propose a Location Privacy Protection (LPP) method which enables a trusted third party to aggregate location-aware requests based on p-destination in mobile social networks. Our LPP can prevent an attacker from associating users' identities, locations and query contents. We also propose a hide-and-seek game-theoretic model for developing defense strategies for the rational trusted third party in dealing with a rational attacker. Detailed analysis is provided for choosing strategies that maximize payoffs, and simulation results are provided to demonstrate that our proposed method protects user privacy.
基于p-destination的移动社交网络位置隐私保护:博弈论分析
k-匿名(K-anonymity)和l-多样性(l-diversity)是在处理个人信息进行数据分析时控制隐私丢失程度的方法,被广泛讨论。用户的隐私可以很容易地通过跟踪其过去/未来的位置泄露。在本文中,我们提出了一种位置隐私保护(LPP)方法,该方法使受信任的第三方能够基于移动社交网络中的p-destination聚合位置感知请求。我们的LPP可以防止攻击者将用户的身份、位置和查询内容关联起来。我们还提出了一个捉迷藏博弈论模型,用于制定理性可信第三方应对理性攻击者的防御策略。详细分析了如何选择收益最大化的策略,并给出了仿真结果,证明了我们提出的方法保护了用户隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信