Progress in Second Generation Ethanol Production with Thermophilic Bacteria

S. Scully, Johann Orlygsson
{"title":"Progress in Second Generation Ethanol Production with Thermophilic Bacteria","authors":"S. Scully, Johann Orlygsson","doi":"10.5772/INTECHOPEN.78020","DOIUrl":null,"url":null,"abstract":"Thermophilic bacteria have gained increased attention as prospective organisms for bioethanol production from lignocellulosic biomass due to their broad substrate spec tra including many of the hexoses pentoses, and disaccharides found in biomass and biomass hydrolysates, fast growth rates, and high tolerance for extreme cultivation con -ditions. Apart from optimizing the ethanol production by varying physiological param - eters, genetic engineering methods have been applied. This review focuses upon those thermophilic anaerobes recognized as being highly ethanologenic, their metabolism, and the importance of various culture parameters affecting ethanol yields, such as the partial pressure of hydrogen, pH, substrate inhibition, and ethanol tolerance. Also, recent devel - opments in evolutionary adaptation and genetic engineering of thermophilic anaerobes are addressed.","PeriodicalId":12484,"journal":{"name":"Fuel Ethanol Production from Sugarcane","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Ethanol Production from Sugarcane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.78020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermophilic bacteria have gained increased attention as prospective organisms for bioethanol production from lignocellulosic biomass due to their broad substrate spec tra including many of the hexoses pentoses, and disaccharides found in biomass and biomass hydrolysates, fast growth rates, and high tolerance for extreme cultivation con -ditions. Apart from optimizing the ethanol production by varying physiological param - eters, genetic engineering methods have been applied. This review focuses upon those thermophilic anaerobes recognized as being highly ethanologenic, their metabolism, and the importance of various culture parameters affecting ethanol yields, such as the partial pressure of hydrogen, pH, substrate inhibition, and ethanol tolerance. Also, recent devel - opments in evolutionary adaptation and genetic engineering of thermophilic anaerobes are addressed.
嗜热细菌生产第二代乙醇的研究进展
由于其广泛的底物谱(包括许多己糖、戊糖和双糖)、快速的生长速度以及对极端培养条件的高耐受性,嗜热细菌作为从木质纤维素生物质中生产生物乙醇的潜在生物受到越来越多的关注。除了通过改变生理参数来优化乙醇生产外,还应用了基因工程方法。本文将重点介绍那些被认为是高度产乙醇的嗜热厌氧菌,它们的代谢,以及影响乙醇产量的各种培养参数的重要性,如氢的分压、pH、底物抑制和乙醇耐受性。同时,本文还讨论了嗜热厌氧菌的进化适应和基因工程的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信