Regression model with artificial neural network for anaerobic digestion of wastewater treatment

R. Parthiban, L. Parthiban
{"title":"Regression model with artificial neural network for anaerobic digestion of wastewater treatment","authors":"R. Parthiban, L. Parthiban","doi":"10.1109/GTEC.2011.6167689","DOIUrl":null,"url":null,"abstract":"Regression analysis can be used to model the relationship between predictor and response variables and is a good choice when all the predictor variables are numeric and continuous valued. In this paper, multilayer perceptron neural network is used for predicting the experimental values obtained in a laboratory scale system of anaerobic tapered fluidized bed reactor (ATFBR). The system study is the anaerobic digestion of synthetic wastewater derived from the starch processing industries. The input parameters considered for modeling are flow rate, CODin, pHin and hydraulic retention time. The output parameters are biogas yield and pHout. The Mean Square Error (MSE) obtained for the test dataset obtained with experimental set-up is as low as 0.1416.","PeriodicalId":13706,"journal":{"name":"International Conference on Green technology and environmental Conservation (GTEC-2011)","volume":"90 1","pages":"332-335"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Green technology and environmental Conservation (GTEC-2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GTEC.2011.6167689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Regression analysis can be used to model the relationship between predictor and response variables and is a good choice when all the predictor variables are numeric and continuous valued. In this paper, multilayer perceptron neural network is used for predicting the experimental values obtained in a laboratory scale system of anaerobic tapered fluidized bed reactor (ATFBR). The system study is the anaerobic digestion of synthetic wastewater derived from the starch processing industries. The input parameters considered for modeling are flow rate, CODin, pHin and hydraulic retention time. The output parameters are biogas yield and pHout. The Mean Square Error (MSE) obtained for the test dataset obtained with experimental set-up is as low as 0.1416.
厌氧消化废水处理的人工神经网络回归模型
回归分析可以用来模拟预测变量和响应变量之间的关系,当所有的预测变量都是数值和连续值时,回归分析是一个很好的选择。本文采用多层感知器神经网络对实验室规模厌氧锥形流化床反应器(ATFBR)的实验值进行预测。本系统研究的是淀粉加工工业合成废水的厌氧消化。建模时考虑的输入参数为流量、CODin、pHin和水力滞留时间。输出参数为沼气产率和pHout。实验设置得到的测试数据集的均方误差(MSE)低至0.1416。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信