A Preconditioned Finite Element Method for the p-Laplacian Parabolic Equation

I. Gerace, P. Pucci, N. Ceccarelli, M. Discepoli, R. Mariani
{"title":"A Preconditioned Finite Element Method for the p-Laplacian Parabolic Equation","authors":"I. Gerace,&nbsp;P. Pucci,&nbsp;N. Ceccarelli,&nbsp;M. Discepoli,&nbsp;R. Mariani","doi":"10.1002/anac.200310013","DOIUrl":null,"url":null,"abstract":"<p>In this paper we propose a method for the discretization of the parabolic <i>p</i>-Laplacian equation. In particular we use alternately either the backward Euler scheme or the Crank-Nicolson scheme for the time-discretization and the first order Finite Element Method for space-discretization as in [7]. To obtain the numerical solution we have to invert a block Toeplitz matrix with Toeplitz blocks. To this aim we use a Conjugate Gradient (CG) algorithm preconditioned by a block circulant matrix with circulant blocks. A Two-Dimensional Discrete Fast Sine-Cosine Transform (2D-DFSCT) is applied to invert the block circulant matrix with circulant blocks. The experimental results show how the application of the preconditioner reduces the iterations of the CG algorithm of about the 56% –75%. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"155-164"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310013","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we propose a method for the discretization of the parabolic p-Laplacian equation. In particular we use alternately either the backward Euler scheme or the Crank-Nicolson scheme for the time-discretization and the first order Finite Element Method for space-discretization as in [7]. To obtain the numerical solution we have to invert a block Toeplitz matrix with Toeplitz blocks. To this aim we use a Conjugate Gradient (CG) algorithm preconditioned by a block circulant matrix with circulant blocks. A Two-Dimensional Discrete Fast Sine-Cosine Transform (2D-DFSCT) is applied to invert the block circulant matrix with circulant blocks. The experimental results show how the application of the preconditioner reduces the iterations of the CG algorithm of about the 56% –75%. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

p- laplace抛物方程的预条件有限元法
本文提出了抛物型p-拉普拉斯方程离散化的一种方法。特别地,我们交替使用后向欧拉格式或Crank-Nicolson格式进行时间离散,一阶有限元方法进行空间离散,如[7]所示。为了得到数值解,我们必须用Toeplitz块对一个块Toeplitz矩阵进行反演。为此,我们使用了一种共轭梯度(CG)算法,该算法以具有循环块的块循环矩阵为前提条件。采用二维离散快速正弦余弦变换(2D-DFSCT)对具有循环块的块循环矩阵进行逆变换。实验结果表明,前置条件的应用使CG算法的迭代次数减少了56% ~ 75%。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信