Domain-dependent/independent topic switching model for online reviews with numerical ratings

Yasutoshi Ida, Takuma Nakamura, Takashi Matsumoto
{"title":"Domain-dependent/independent topic switching model for online reviews with numerical ratings","authors":"Yasutoshi Ida, Takuma Nakamura, Takashi Matsumoto","doi":"10.1145/2505515.2505540","DOIUrl":null,"url":null,"abstract":"We propose a domain-dependent/independent topic switching model based on Bayesian probabilistic modeling for modeling online product reviews that are accompanied with numerical ratings provided by users. In this model, each word is allocated to a domain-dependent topic or a domain-independent topic, and the distribution of topics in an online review is connected to an observed numerical rating via a linear regression model. Domain-dependent topics utilize domain information observed with a corpus, and domain-independent topics utilize the framework of Bayesian Nonparametrics, which can estimate the number of topics in posterior distributions. The posterior distribution is estimated via collapsed Gibbs sampling. Using real data, our proposed model had smaller mean square error and smaller average mean error with a small model size and achieved convergence in fewer iterations for a regression task involving online review ratings, outperforming a baseline model that did not consider domains. Moreover, the proposed model can also tell us whether the words are positive or negative in the form of continuous values. This feature allows us to extract domain-dependent and -independent sentiment words.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a domain-dependent/independent topic switching model based on Bayesian probabilistic modeling for modeling online product reviews that are accompanied with numerical ratings provided by users. In this model, each word is allocated to a domain-dependent topic or a domain-independent topic, and the distribution of topics in an online review is connected to an observed numerical rating via a linear regression model. Domain-dependent topics utilize domain information observed with a corpus, and domain-independent topics utilize the framework of Bayesian Nonparametrics, which can estimate the number of topics in posterior distributions. The posterior distribution is estimated via collapsed Gibbs sampling. Using real data, our proposed model had smaller mean square error and smaller average mean error with a small model size and achieved convergence in fewer iterations for a regression task involving online review ratings, outperforming a baseline model that did not consider domains. Moreover, the proposed model can also tell us whether the words are positive or negative in the form of continuous values. This feature allows us to extract domain-dependent and -independent sentiment words.
带有数字评级的在线评论的领域依赖/独立主题切换模型
我们提出了一种基于贝叶斯概率建模的领域相关/独立主题切换模型,用于对带有用户提供的数值评级的在线产品评论进行建模。在该模型中,每个词被分配到一个领域相关的主题或一个领域独立的主题,并通过线性回归模型将在线评论中的主题分布与观察到的数值评级联系起来。领域相关的主题利用从语料库中观察到的领域信息,而领域独立的主题利用贝叶斯非参数框架,可以估计后验分布中的主题数量。后验分布是通过崩溃吉布斯抽样估计的。使用真实数据,我们提出的模型具有较小的均方误差和较小的平均平均误差,模型尺寸较小,并且在涉及在线评论评级的回归任务中实现了较少的迭代收敛,优于不考虑域的基线模型。此外,该模型还可以以连续值的形式告诉我们单词是正的还是负的。这个特性允许我们提取领域相关和独立的情感词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信