{"title":"A semi-implicit approach for the modeling of wells with inflow control completions","authors":"E. Flauraud, D. Ding","doi":"10.2516/ogst/2020034","DOIUrl":null,"url":null,"abstract":"In the last two decades, new technologies have been introduced to equip wells with intelligent completions such as Inflow Control Device (ICD) or Inflow Control Valve (ICV) in order to optimize the oil recovery by reducing the undesirable production of gas and water. To optimally define the locations of the packers and the characteristics of the valves, efficient reservoir simulation models are required. This paper is aimed at presenting the specific developments introduced in a multipurpose industrial reservoir simulator to simulate such wells equipped with intelligent completions taking into account the pressure drop and multiphase flow. An explicit coupling or decoupling of a reservoir model and a well flow model with intelligent completion makes usually unstable and non-convergent results, and a fully implicit coupling is CPU time consuming and difficult to be implemented. This paper presents therefore a semi-implicit approach, which links on one side to the reservoir simulation model and on the other side to the well flow model, to integrate ICD and ICV.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2020034","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
In the last two decades, new technologies have been introduced to equip wells with intelligent completions such as Inflow Control Device (ICD) or Inflow Control Valve (ICV) in order to optimize the oil recovery by reducing the undesirable production of gas and water. To optimally define the locations of the packers and the characteristics of the valves, efficient reservoir simulation models are required. This paper is aimed at presenting the specific developments introduced in a multipurpose industrial reservoir simulator to simulate such wells equipped with intelligent completions taking into account the pressure drop and multiphase flow. An explicit coupling or decoupling of a reservoir model and a well flow model with intelligent completion makes usually unstable and non-convergent results, and a fully implicit coupling is CPU time consuming and difficult to be implemented. This paper presents therefore a semi-implicit approach, which links on one side to the reservoir simulation model and on the other side to the well flow model, to integrate ICD and ICV.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.