Real-time Transformer Diagnosis using Voltage-Current Signal over Cloud Environment

A. Smagulova, Aigerim Borasheva, Nurtas Moldiyar, Nurbolat Bazarbek, M. Bagheri, B. Phung
{"title":"Real-time Transformer Diagnosis using Voltage-Current Signal over Cloud Environment","authors":"A. Smagulova, Aigerim Borasheva, Nurtas Moldiyar, Nurbolat Bazarbek, M. Bagheri, B. Phung","doi":"10.1109/CMD.2018.8535876","DOIUrl":null,"url":null,"abstract":"Most transformer diagnosis methods can only be performed off-line when the transformer is taken out of service. This study is specifically focused on the V-I locus method for real-time transformer active part evaluation over the cloud environment and assessment of captured data through cloud computing. Experiments are carried out on a test setup to study turn-to-turn short circuit fault created on small transformers. Transformer mechanical fault recognition is discussed and the voltage/current technique is evaluated. Data obtained from practical measurements is analysed over cloud environment and assessment of the transformer condition is performed via application on mobile device. Also, protection relay connected to the transformer can be activated via cloud-based data assessment.","PeriodicalId":6529,"journal":{"name":"2018 Condition Monitoring and Diagnosis (CMD)","volume":"144 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Condition Monitoring and Diagnosis (CMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMD.2018.8535876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most transformer diagnosis methods can only be performed off-line when the transformer is taken out of service. This study is specifically focused on the V-I locus method for real-time transformer active part evaluation over the cloud environment and assessment of captured data through cloud computing. Experiments are carried out on a test setup to study turn-to-turn short circuit fault created on small transformers. Transformer mechanical fault recognition is discussed and the voltage/current technique is evaluated. Data obtained from practical measurements is analysed over cloud environment and assessment of the transformer condition is performed via application on mobile device. Also, protection relay connected to the transformer can be activated via cloud-based data assessment.
云环境下电压电流信号的实时变压器诊断
大多数变压器诊断方法只能在变压器停止工作时离线执行。本研究特别关注云环境下实时变压器主动部件评估的V-I轨迹方法以及通过云计算对捕获数据的评估。在试验装置上对小型变压器的匝间短路故障进行了实验研究。讨论了变压器机械故障识别,并对电压电流技术进行了评价。从实际测量中获得的数据在云环境中进行分析,并通过移动设备上的应用程序对变压器状况进行评估。此外,连接到变压器的保护继电器可以通过基于云的数据评估来激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信