Sampling numbers of smoothness classes via 𝓁1-minimization

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Thomas Jahn, T. Ullrich, Felix Voigtländer
{"title":"Sampling numbers of smoothness classes via 𝓁1-minimization","authors":"Thomas Jahn, T. Ullrich, Felix Voigtländer","doi":"10.48550/arXiv.2212.00445","DOIUrl":null,"url":null,"abstract":"Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in $L^2$. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in $L^2$ can be upper bounded by best $n$-term trigonometric widths in $L^\\infty$. We describe a recovery procedure from $m$ function values based on $\\ell^1$-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of $m^{-1/2}$ (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to $S^r_pW(\\mathbb{T}^d)$ on the $d$-torus with a logarithmically better rate of convergence than any linear method can achieve when $1","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.00445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

Abstract

Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in $L^2$. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in $L^2$ can be upper bounded by best $n$-term trigonometric widths in $L^\infty$. We describe a recovery procedure from $m$ function values based on $\ell^1$-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of $m^{-1/2}$ (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to $S^r_pW(\mathbb{T}^d)$ on the $d$-torus with a logarithmically better rate of convergence than any linear method can achieve when $1
通过𝓁1-minimization获取平滑度类的采样数
利用压缩感知领域最新发展的技术,我们证明了$L^2$中(拟-)Banach平滑空间的一般(非线性)采样数的新上界。特别地,我们证明了在相关的情况下,如混合和各向同性加权Wiener类或具有混合平滑性的Sobolev空间中,$L^2$中的采样数可以被$L^ inty $中的最佳$n$项三角宽度的上界。我们描述了基于$\ well ^1$最小化(基追求去噪)的$m$函数值的恢复过程。与最近开发的线性恢复方法相比,这种方法的收敛速度有了显著的提高。在这种确定的最坏情况设置中,我们看到与加权Wiener空间的线性方法相比,$m^{-1/2}$(高达对数因子)的额外加速。对于它们的拟巴拿赫对应物,甚至任意多项式加速是可能的。令人惊讶的是,我们的方法允许在$d$-环面上恢复属于$S^r_pW(\mathbb{T}^d)$的混合平滑Sobolev函数,其收敛速度比任何线性方法在$1时都要高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信