{"title":"Sampling numbers of smoothness classes via 𝓁1-minimization","authors":"Thomas Jahn, T. Ullrich, Felix Voigtländer","doi":"10.48550/arXiv.2212.00445","DOIUrl":null,"url":null,"abstract":"Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in $L^2$. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in $L^2$ can be upper bounded by best $n$-term trigonometric widths in $L^\\infty$. We describe a recovery procedure from $m$ function values based on $\\ell^1$-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of $m^{-1/2}$ (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to $S^r_pW(\\mathbb{T}^d)$ on the $d$-torus with a logarithmically better rate of convergence than any linear method can achieve when $1","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.00445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8
Abstract
Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in $L^2$. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in $L^2$ can be upper bounded by best $n$-term trigonometric widths in $L^\infty$. We describe a recovery procedure from $m$ function values based on $\ell^1$-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of $m^{-1/2}$ (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to $S^r_pW(\mathbb{T}^d)$ on the $d$-torus with a logarithmically better rate of convergence than any linear method can achieve when $1
利用压缩感知领域最新发展的技术,我们证明了$L^2$中(拟-)Banach平滑空间的一般(非线性)采样数的新上界。特别地,我们证明了在相关的情况下,如混合和各向同性加权Wiener类或具有混合平滑性的Sobolev空间中,$L^2$中的采样数可以被$L^ inty $中的最佳$n$项三角宽度的上界。我们描述了基于$\ well ^1$最小化(基追求去噪)的$m$函数值的恢复过程。与最近开发的线性恢复方法相比,这种方法的收敛速度有了显著的提高。在这种确定的最坏情况设置中,我们看到与加权Wiener空间的线性方法相比,$m^{-1/2}$(高达对数因子)的额外加速。对于它们的拟巴拿赫对应物,甚至任意多项式加速是可能的。令人惊讶的是,我们的方法允许在$d$-环面上恢复属于$S^r_pW(\mathbb{T}^d)$的混合平滑Sobolev函数,其收敛速度比任何线性方法在$1时都要高