V. Silva, A. Moliterno, C. Araujo, Francis Pimentel, Jose Ronaldo Chaves Melo, C. Falcao, T. Pessoa
{"title":"Buzios Drainage Strategy: A Combination Of Reservoir Characterization, Risks Mitigation And Unique Contract Features","authors":"V. Silva, A. Moliterno, C. Araujo, Francis Pimentel, Jose Ronaldo Chaves Melo, C. Falcao, T. Pessoa","doi":"10.4043/31170-ms","DOIUrl":null,"url":null,"abstract":"\n Petrobras acquired the right to produce 3.058 billion boe under the Transfer of Rights (ToR) in Buzios field, which still has a recoverable surplus, recently auctioned by the Brazilian Petroleum Regulatory Agency. Properly planning the production development of a supergiant field and under two tax regimes, requires a large multidisciplinary effort of data acquisition, characterization and modelling.\n Located in the Santos Basin Pre-Salt Pole, the Buzios field is a deep-water supergiant that has a large thickness of carbonate reservoirs, with significant areal and vertical variation. The presence of faults, fractures, karsts and other diagenetic processes adds complexity to the field, which motivated the development and implantation of industry innovations to enable its development. The presence of high levels of CO2 and H2S in the reservoir fluid, the risk of inorganic scaling and asphaltene deposition and risks of early fluid channeling and low sweep efficiency due to the aforementioned geological complexities are challenges that need to be addressed.\n One of these challenges is to ensure a better seismic data for the reservoir characterization. The 3D seismic data from a streamer acquisition did not have sufficient quality for this. The geological complexity of the field, the great reservoir depth and mainly the very irregular topography of the overlying evaporitic sequence indicated the need for rich azimuth seismic data. This led to the world's largest ultra-deep water seismic survey using Ocean Bottom Nodes (OBN) technology.\n This paper will address the static and dynamic data acquisition from the wells and the Early Productions Systems (EPS), as well as the challenges that arose and were faced by Petrobras through technology and innovation, and the complexity of the reservoir dynamic modelling. Furthermore, the OBN seismic acquisition in Buzios will be discussed in more detail, as well as the frontier that this acquisition opens to the development of the field.","PeriodicalId":11072,"journal":{"name":"Day 1 Mon, August 16, 2021","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, August 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31170-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Petrobras acquired the right to produce 3.058 billion boe under the Transfer of Rights (ToR) in Buzios field, which still has a recoverable surplus, recently auctioned by the Brazilian Petroleum Regulatory Agency. Properly planning the production development of a supergiant field and under two tax regimes, requires a large multidisciplinary effort of data acquisition, characterization and modelling.
Located in the Santos Basin Pre-Salt Pole, the Buzios field is a deep-water supergiant that has a large thickness of carbonate reservoirs, with significant areal and vertical variation. The presence of faults, fractures, karsts and other diagenetic processes adds complexity to the field, which motivated the development and implantation of industry innovations to enable its development. The presence of high levels of CO2 and H2S in the reservoir fluid, the risk of inorganic scaling and asphaltene deposition and risks of early fluid channeling and low sweep efficiency due to the aforementioned geological complexities are challenges that need to be addressed.
One of these challenges is to ensure a better seismic data for the reservoir characterization. The 3D seismic data from a streamer acquisition did not have sufficient quality for this. The geological complexity of the field, the great reservoir depth and mainly the very irregular topography of the overlying evaporitic sequence indicated the need for rich azimuth seismic data. This led to the world's largest ultra-deep water seismic survey using Ocean Bottom Nodes (OBN) technology.
This paper will address the static and dynamic data acquisition from the wells and the Early Productions Systems (EPS), as well as the challenges that arose and were faced by Petrobras through technology and innovation, and the complexity of the reservoir dynamic modelling. Furthermore, the OBN seismic acquisition in Buzios will be discussed in more detail, as well as the frontier that this acquisition opens to the development of the field.