On Hardness of Testing Equivalence to Sparse Polynomials Under Shifts

S. Chillara, Coral Grichener, Amir Shpilka
{"title":"On Hardness of Testing Equivalence to Sparse Polynomials Under Shifts","authors":"S. Chillara, Coral Grichener, Amir Shpilka","doi":"10.48550/arXiv.2207.10588","DOIUrl":null,"url":null,"abstract":"We say that two given polynomials $f, g \\in R[X]$, over a ring $R$, are equivalent under shifts if there exists a vector $a \\in R^n$ such that $f(X+a) = g(X)$. Grigoriev and Karpinski (FOCS 1990), Lakshman and Saunders (SICOMP, 1995), and Grigoriev and Lakshman (ISSAC 1995) studied the problem of testing polynomial equivalence of a given polynomial to any $t$-sparse polynomial, over the rational numbers, and gave exponential time algorithms. In this paper, we provide hardness results for this problem. Formally, for a ring $R$, let $\\mathrm{SparseShift}_R$ be the following decision problem. Given a polynomial $P(X)$, is there a vector $a$ such that $P(X+a)$ contains fewer monomials than $P(X)$. We show that $\\mathrm{SparseShift}_R$ is at least as hard as checking if a given system of polynomial equations over $R[x_1,\\ldots, x_n]$ has a solution (Hilbert's Nullstellensatz). As a consequence of this reduction, we get the following results. 1. $\\mathrm{SparseShift}_\\mathbb{Z}$ is undecidable. 2. For any ring $R$ (which is not a field) such that $\\mathrm{HN}_R$ is $\\mathrm{NP}_R$-complete over the Blum-Shub-Smale model of computation, $\\mathrm{SparseShift}_{R}$ is also $\\mathrm{NP}_{R}$-complete. In particular, $\\mathrm{SparseShift}_{\\mathbb{Z}}$ is also $\\mathrm{NP}_{\\mathbb{Z}}$-complete. We also study the gap version of the $\\mathrm{SparseShift}_R$ and show the following. 1. For every function $\\beta: \\mathbb{N}\\to\\mathbb{R}_+$ such that $\\beta\\in o(1)$, $N^\\beta$-gap-$\\mathrm{SparseShift}_\\mathbb{Z}$ is also undecidable (where $N$ is the input length). 2. For $R=\\mathbb{F}_p, \\mathbb{Q}, \\mathbb{R}$ or $\\mathbb{Z}_q$ and for every $\\beta>1$ the $\\beta$-gap-$\\mathrm{SparseShift}_R$ problem is $\\mathrm{NP}$-hard.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"77 1","pages":"22:1-22:20"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.10588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We say that two given polynomials $f, g \in R[X]$, over a ring $R$, are equivalent under shifts if there exists a vector $a \in R^n$ such that $f(X+a) = g(X)$. Grigoriev and Karpinski (FOCS 1990), Lakshman and Saunders (SICOMP, 1995), and Grigoriev and Lakshman (ISSAC 1995) studied the problem of testing polynomial equivalence of a given polynomial to any $t$-sparse polynomial, over the rational numbers, and gave exponential time algorithms. In this paper, we provide hardness results for this problem. Formally, for a ring $R$, let $\mathrm{SparseShift}_R$ be the following decision problem. Given a polynomial $P(X)$, is there a vector $a$ such that $P(X+a)$ contains fewer monomials than $P(X)$. We show that $\mathrm{SparseShift}_R$ is at least as hard as checking if a given system of polynomial equations over $R[x_1,\ldots, x_n]$ has a solution (Hilbert's Nullstellensatz). As a consequence of this reduction, we get the following results. 1. $\mathrm{SparseShift}_\mathbb{Z}$ is undecidable. 2. For any ring $R$ (which is not a field) such that $\mathrm{HN}_R$ is $\mathrm{NP}_R$-complete over the Blum-Shub-Smale model of computation, $\mathrm{SparseShift}_{R}$ is also $\mathrm{NP}_{R}$-complete. In particular, $\mathrm{SparseShift}_{\mathbb{Z}}$ is also $\mathrm{NP}_{\mathbb{Z}}$-complete. We also study the gap version of the $\mathrm{SparseShift}_R$ and show the following. 1. For every function $\beta: \mathbb{N}\to\mathbb{R}_+$ such that $\beta\in o(1)$, $N^\beta$-gap-$\mathrm{SparseShift}_\mathbb{Z}$ is also undecidable (where $N$ is the input length). 2. For $R=\mathbb{F}_p, \mathbb{Q}, \mathbb{R}$ or $\mathbb{Z}_q$ and for every $\beta>1$ the $\beta$-gap-$\mathrm{SparseShift}_R$ problem is $\mathrm{NP}$-hard.
位移下稀疏多项式等价检验的硬度
我们说两个给定的多项式$f, g \in R[X]$,在环$R$上,如果存在一个向量$a \in R^n$使得$f(X+a) = g(X)$,在移位下是等价的。Grigoriev和Karpinski (FOCS 1990), Lakshman和Saunders (SICOMP, 1995)以及Grigoriev和Lakshman (ISSAC 1995)研究了在有理数上检验给定多项式与任意$t$-稀疏多项式的多项式等价性的问题,并给出了指数时间算法。本文给出了这一问题的硬度结果。形式上,对于环$R$,设$\ mathm {SparseShift}_R$为以下决策问题。给定一个多项式$P(X)$,是否存在一个向量$a$使得$P(X+a)$包含的单项式比$P(X)$少?我们证明$\ mathm {SparseShift}_R$至少与检查$R[x_1,\ldots, x_n]$上的给定多项式方程组是否有解(Hilbert's Nullstellensatz)一样困难。由于这种减少,我们得到以下结果。1. $\ mathm {sparsesshift}_\mathbb{Z}$是不可确定的。2. 对于任何环$R$(它不是一个字段)使得$\ mathm {HN}_R$在计算的Blum-Shub-Smale模型上是$\ mathm {NP}_R$完全,$\ mathm {SparseShift}_{R}$也是$\ mathm {NP}_{R}$完全。特别地,$\ mathm {SparseShift}_{\mathbb{Z}}$也是$\ mathm {NP}_{\mathbb{Z}}$-complete。我们还研究了$\ mathm {SparseShift}_R$的gap版本,并展示了以下内容。1. 对于每个函数$\beta: \mathbb{N}\到\mathbb{R}_+$,使得$\beta\in o(1)$, $N^\beta$-gap-$\ mathm {sparsesshift}_\mathbb{Z}$也是不可判定的(其中$N$是输入长度)。2. 对于$R=\mathbb{F}_p, \mathbb{Q}, \mathbb{R}$或$\mathbb{Z}_q$以及对于每个$\beta>1$, $\beta$-gap-$\ mathm {SparseShift}_R$问题是$\ mathm {NP}$-hard。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信