Existence of Positivity of the Solutions for Higher Order Three-Point Boundary Value Problems involving p-Laplacian

Ravi Sankar, Sreedhar Namburi, K. Rajendra Prasad
{"title":"Existence of Positivity of the Solutions for Higher Order Three-Point Boundary Value Problems involving p-Laplacian","authors":"Ravi Sankar, Sreedhar Namburi, K. Rajendra Prasad","doi":"10.31197/atnaa.845044","DOIUrl":null,"url":null,"abstract":"The present study focusses on the existence of positivity of the solutions to the higher order three-point boundary value problems involving $p$-Laplacian $$[\\phi_{p}(x^{(m)}(t))]^{(n)}=g(t,x(t)),~~t \\in [0, 1],$$ $$ \\begin{aligned} x^{(i)}(0)=0, &\\text{~for~} 0\\leq i\\leq m-2,\\\\ x^{(m-2)}(1)&-\\alpha x^{(m-2)}(\\xi)=0,\\\\ [\\phi_{p}(x^{(m)}(t))]^{(j)}_{\\text {at} ~ t=0}&=0, \\text{~for~} 0\\leq j\\leq n-2,\\\\ [\\phi_{p}(x^{(m)}(t))]^{(n-2)}_{\\text {at} ~ t=1}&-\\alpha[\\phi_{p}(x^{(m)}(t))]^{(n-2)}_{\\text {at} ~ t=\\xi}=0, \\end{aligned} $$ where $m,n\\geq 3$, $\\xi\\in(0,1)$, $\\alpha\\in (0,\\frac{1}{\\xi})$ is a parameter. The approach used by the application of Guo--Krasnosel'skii fixed point theorem to determine the existence of positivity of the solutions to the problem.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.845044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study focusses on the existence of positivity of the solutions to the higher order three-point boundary value problems involving $p$-Laplacian $$[\phi_{p}(x^{(m)}(t))]^{(n)}=g(t,x(t)),~~t \in [0, 1],$$ $$ \begin{aligned} x^{(i)}(0)=0, &\text{~for~} 0\leq i\leq m-2,\\ x^{(m-2)}(1)&-\alpha x^{(m-2)}(\xi)=0,\\ [\phi_{p}(x^{(m)}(t))]^{(j)}_{\text {at} ~ t=0}&=0, \text{~for~} 0\leq j\leq n-2,\\ [\phi_{p}(x^{(m)}(t))]^{(n-2)}_{\text {at} ~ t=1}&-\alpha[\phi_{p}(x^{(m)}(t))]^{(n-2)}_{\text {at} ~ t=\xi}=0, \end{aligned} $$ where $m,n\geq 3$, $\xi\in(0,1)$, $\alpha\in (0,\frac{1}{\xi})$ is a parameter. The approach used by the application of Guo--Krasnosel'skii fixed point theorem to determine the existence of positivity of the solutions to the problem.
涉及p-拉普拉斯算子的高阶三点边值问题解的正存在性
本文研究了高阶三点边值问题解的正性存在性,该问题涉及$p$ -拉普拉斯方程$$[\phi_{p}(x^{(m)}(t))]^{(n)}=g(t,x(t)),~~t \in [0, 1],$$$$ \begin{aligned} x^{(i)}(0)=0, &\text{~for~} 0\leq i\leq m-2,\\ x^{(m-2)}(1)&-\alpha x^{(m-2)}(\xi)=0,\\ [\phi_{p}(x^{(m)}(t))]^{(j)}_{\text {at} ~ t=0}&=0, \text{~for~} 0\leq j\leq n-2,\\ [\phi_{p}(x^{(m)}(t))]^{(n-2)}_{\text {at} ~ t=1}&-\alpha[\phi_{p}(x^{(m)}(t))]^{(n-2)}_{\text {at} ~ t=\xi}=0, \end{aligned} $$,其中$m,n\geq 3$, $\xi\in(0,1)$, $\alpha\in (0,\frac{1}{\xi})$为参数。利用Guo—Krasnosel’skii不动点定理确定问题解的正性存在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信