{"title":"On L-derivatives and biextensions of Calabi–Yau motives","authors":"Vasily Golyshev","doi":"10.1017/exp.2023.15","DOIUrl":null,"url":null,"abstract":"Abstract We prove that certain differential operators of the form $ DLD $ with $ L $ hypergeometric and $ D=z\\frac{\\partial }{dz} $ are of Picard–Fuchs type. We give closed hypergeometric expressions for minors of the biextension period matrices that arise from certain rank 4 weight 3 Calabi–Yau motives presumed to be of analytic rank 1. We compare their values numerically to the first derivative of the $ L $ -functions of the respective motives at $ s=2 $ .","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2023.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We prove that certain differential operators of the form $ DLD $ with $ L $ hypergeometric and $ D=z\frac{\partial }{dz} $ are of Picard–Fuchs type. We give closed hypergeometric expressions for minors of the biextension period matrices that arise from certain rank 4 weight 3 Calabi–Yau motives presumed to be of analytic rank 1. We compare their values numerically to the first derivative of the $ L $ -functions of the respective motives at $ s=2 $ .